4,029 research outputs found
The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding
The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications. The antibodies H-156 and JC8 detected the same 16 kDa protein in western blot and immunoprecipitation tests, whereas the antibody F-12 did not detect any protein in western blot analysis or capture a protein that could be recognised by the H-156 antibody. In immunocytochemistry tests, the antibodies JC8 and H-156 detected a predominately cytoplasmic localised antigen, whose signal was depleted in p16INK4a siRNA experiments. F-12, in contrast, detected a predominately nuclear located antigen and there was no noticeable reduction in this signal after siRNA knockdown. Furthermore in immunohistochemistry tests, F-12 generated a different pattern of staining compared to the JC8 and E6H4 antibodies. These results demonstrate that three out of four commercially available p16INK4a antibodies are specific to, and indicate a mainly cytoplasmic localisation for, the p16INK4a protein. The F-12 antibody, which has been widely used in previous studies, gave different results to the other antibodies and did not demonstrate specificity to human p16INK4a. This work emphasizes the importance of the validation of commercial antibodies, aside to the previously reported use, for the full verification of immunoreaction specificity
Recommended from our members
Biotic carbon feedbacks in a materially-closed soil-vegetation-atmosphere system
The magnitude and direction of the coupled feedbacks between the biotic and abiotic components of the terrestrial carbon cycle is a major source of uncertainty in coupled climate–carbon-cycle models1, 2, 3. Materially closed, energetically open biological systems continuously and simultaneously allow the two-way feedback loop between the biotic and abiotic components to take place4, 5, 6, 7, but so far have not been used to their full potential in ecological research, owing to the challenge of achieving sustainable model systems6, 7. We show that using materially closed soil–vegetation–atmosphere systems with pro rata carbon amounts for the main terrestrial carbon pools enables the establishment of conditions that balance plant carbon assimilation, and autotrophic and heterotrophic respiration fluxes over periods suitable to investigate short-term biotic carbon feedbacks. Using this approach, we tested an alternative way of assessing the impact of increased CO2 and temperature on biotic carbon feedbacks. The results show that without nutrient and water limitations, the short-term biotic responses could potentially buffer a temperature increase of 2.3 °C without significant positive feedbacks to atmospheric CO2. We argue that such closed-system research represents an important test-bed platform for model validation and parameterization of plant and soil biotic responses to environmental changes
An eclipsing binary distance to the Large Magellanic Cloud accurate to 2 per cent
In the era of precision cosmology it is essential to determine the Hubble
Constant with an accuracy of 3% or better. Currently, its uncertainty is
dominated by the uncertainty in the distance to the Large Magellanic Cloud
(LMC) which as the second nearest galaxy serves as the best anchor point of the
cosmic distance scale. Observations of eclipsing binaries offer a unique
opportunity to precisely and accurately measure stellar parameters and
distances. The eclipsing binary method was previously applied to the LMC but
the accuracy of the distance results was hampered by the need to model the
bright, early-type systems used in these studies. Here, we present distance
determinations to eight long-period, late- type eclipsing systems in the LMC
composed of cool giant stars. For such systems we can accurately measure both
the linear and angular sizes of their components and avoid the most important
problems related to the hot early-type systems. Our LMC distance derived from
these systems is demonstrably accurate to 2.2 % (49.97 +/- 0.19 (statistical)
+/- 1.11 (systematic) kpc) providing a firm base for a 3 % determination of the
Hubble Constant, with prospects for improvement to 2 % in the future.Comment: 34 pages, 5 figures, 13 tables, published in the Nature, a part of
our data comes from new unpublished OGLE-IV photometric dat
SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care
<p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p
Coordinated grid and place cell replay during rest
Hippocampal replay has been hypothesized to underlie memory consolidation and navigational planning, yet the involvement of grid cells in replay is unknown. During replay we found grid cells to be spatially coherent with place cells, encoding locations 11 ms delayed relative to the hippocampus, with directionally modulated grid cells and forward replay exhibiting the greatest coherence with the CA1 area of the hippocampus. This suggests grid cells are engaged during the consolidation of spatial memories to the neocortex
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local
management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef
fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions
and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the
1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites
and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure,
diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale
integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales,
with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas
still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should
be integrated into existing management frameworks and combined with policies to improve system-wide resilience to
climate variation and change
Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
Integrated stratigraphy of the Waitakian-Otaian Stage boundary stratotype, Early Miocene, New Zealand
The base of the type section of the Otaian Stage at Bluecliffs, South Canterbury, is recognised as the stratotype for the boundary between the Waitakian and Otaian Stages. Principal problems with the boundary are the restriction of existing bioevent proxies to shelf and upper slope environments and its uncertain age. These topics are addressed by a multidisplinary study of a 125 m section about the boundary, which examines its lithostratigraphy, depositional setting, biostratigraphy, correlation, and geochronology.
The lower siltstone lithofacies (0-38.5 m) was deposited at upper bathyal depths (200-600 m) in a marginal basin which was partially sheltered from fully oceanic circulation by a submarine high and islands. The site was covered by cool-temperate water and was probably adjacent to the Subtropical Convergence. This unit is succeeded by the banded lithofacies (38.5-106 m) and the upper siltstone lithofacies (basal 19 m studied). Paleodepth probably declined up-sequence, but deposition at shelf depths is not definitely indicated. A cyclic pattern of abundance spikes in benthic and planktonic foraminifera commences 9 m above base and extends to 73 m in the banded lithofacies. Oxygen isotope excursions (up to 2.08%) in Euuvigerina miozea and Cibicides novozelandicus are greatest within the interval containing the abundance spikes. The stage boundary occurs in the banded lithofacies at the highest abundance spike (73 m). Although condensed intervals might affect the completeness of the section, they are not associated with sedimentary discontinuities, and we consider that the section is suitable as a biostratigraphic reference.
Spores, pollens, dinoflagellates, calcareous nannofossils, foraminifera, bryozoans, and ostracods are preserved near the boundary, but molluscs principally occur higher, in the shallower upper siltstone lithofacies. Siliceous microfossils are rare. There is considerable scope for further biostratigraphic research.
The primary event marking the boundary at 73 m is the appearance of the benthic foraminifer Ehrenbergina marwicki. This is a distinctive and widely distributed event but is restricted to shelf and upper bathyal environments. Supplementary events in planktonic foraminifera and calcareous nannofossils were researched. Highest occurrences of Globigerina brazieri and G. euapertura are recorded at 47 and 58 m. There is a marked decline in relative abundance of Paragloborotalia spp. at 62 m. Helicosphaera carteri becomes more abundant than H. euphratis between 56 and 87 m. These events are not exact proxies for the boundary but they may usefully indicate proximity to it. They occur in the interval of prominent spikes in foraminiferal abundance.
The Waitakian-Otaian boundary is dated at 21.7 Ma by strontium isotopes. Stable primary remanence could not be determined in a pilot paleomagnetic study of Bluecliffs specimens. However, specimens trended towards reversed polarity, and remagnetisation great circle analysis will allow directions to be calculated in future collections
Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser
Gisbert Winnewisser's astronomical career was practically coextensive with
the whole development of molecular radio astronomy. Here I would like to pick
out a few of his many contributions, which I, personally, find particularly
interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter
Astronomy Group. To appear in the Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies"
eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer:
Berlin
- …
