6,990 research outputs found

    The triggered behavior of a controlled corona stabilised cascade switch

    Get PDF
    Corona stabilised switches have been shown to have advantages in pulse power switching applications due to their high repetition rates and low jitter. Work performed in recent years by the High Voltage Technologies Group within the Department of Electronic and Electrical Engineering at the University of Strathclyde has shown that the operating voltage range of such switches can be extended by using a multi-gap cascade configuration. One particular multi-gap topology was shown to operate under pressure at 100 kV with a switching jitter of 2ns. It has since been shown that by modifying the topology of the corona sources on the electrodes, it is possible to control the grading of the voltage distribution across the gaps in the cascade. The voltages across each gap and the self-break behaviour of the cascade were found to be in close agreement with the values predicted from the corona emission characteristics for the tested electrode topologies. This paper reports on a further examination of the behaviour of the corona controlled switching topology, where triggered operation of the switch has been investigated for different voltage distributions across the cascade gaps

    The Practitioner\u27s Corner: An exploration of municipal active living charter development and advocacy

    Get PDF
    Background: Numerous municipal active living-­‐related charters have been adopted to promote physical activity in Canada throughout the past decade. Despite this trend, there are few published critical examinations of the process through which charters are developed and used. Purpose: Thus, the purpose of this study was to establish greater understanding of active living charter development and advocacy. Methods: Semi-­‐structured interviews were conducted with eight primary contributors to different active living-­‐related charters across Ontario, Canada. Interview questions explored participants’ experiences developing and advocating for an active living charter. Interviews were analyzed using open, axial, and selective coding. Results and Conclusions: Participants consistently described a process whereby an impetus triggered the development of a charter, which was subsequently adopted by regional or municipal council. Continued advocacy to develop awareness of the charter and to promote desired outcomes in the community was valued and the capacity of the working group as well as the local political context played pivotal roles in determining how the charter was implemented. Outcomes were, however, only objectively evaluated in one case that was described – evaluation being a process that many participants thought was omitted in regard to their own charter. This work provides practical guidance for health professionals developing regional active living charters as a component of broader advocacy efforts

    The structure of Rph, an exoribonuclease from Bacillus anthracis, at 1.7 angstrom resolution

    Get PDF
    Maturation of tRNA precursors into functional tRNA molecules requires trimming of the primary transcript at both the 5' and 3' ends. Cleavage of nucleotides from the 3' stem of tRNA precursors, releasing nucleotide diphosphates, is accomplished in Bacillus by a phosphate-dependent exoribonuclease, Rph. The crystal structure of this enzyme from B. anthracis has been solved by molecular replacement to a resolution of 1.7 angstrom and refined to an R factor of 19.3%. There is one molecule in the asymmetric unit; the crystal packing reveals the assembly of the protein into a hexamer arranged as a trimer of dimers. The structure shows two sulfate ions bound in the active-site pocket, probably mimicking the phosphate substrate and the phosphate of the 3'-terminal nucleotide of the tRNA precursor. Three other bound sulfate ions point to likely RNA-binding sites

    Elevated ACKR2 expression is a common feature of inflammatory arthropathies

    Get PDF
    Objectives. Chemokines are essential contributors to leucocyte accumulation at sites of inflammatory pathology. Interfering with chemokine or chemokine receptor function therefore represents a plausible therapeutic option. However, our currently limited understanding of chemokine orchestration of inflammatory responses means that such therapies have not yet been fully developed. We have a particular interest in the family of atypical chemokine receptors that fine-tune, or resolve, chemokine-driven responses. In particular we are interested in atypical chemokine receptor 2 (ACKR2), which is a scavenging receptor for inflammatory CC-chemokines and that therefore helps to resolve in vivo inflammatory responses. The objective of the current study was to examine ACKR2 expression in common arthropathies. Methods. ACKR2 expression was measured by a combination of qPCR and immuno-histochemistry. In addition, circulating cytokine and chemokine levels in patient plasma were assessed using multiplexing approaches. Results. Expression of ACKR2 was elevated on peripheral blood cells as well as on leucocytes and stromal cells in synovial tissue. Expression on peripheral blood leucocytes correlated with, and could be regulated by, circulating cytokines with particularly strong associations being seen with IL-6 and hepatocyte growth factor. In addition, expression within the synovium was coincident with aggregates of lymphocytes, potentially atopic follicles and sites of high inflammatory chemokine expression. Similarly increased levels of ACKR2 have been reported in psoriasis and SSc. Conclusion. Our data clearly show increased ACKR2 in a variety of arthropathies and taking into account our, and others’, previous data we now propose that elevated ACKR2 expression is a common feature of inflammatory pathologies

    Methanotrophic Bacteria for Nutrient Removal from Wastewater: Attached Film System

    Get PDF
    It was hypothesized that nutrient removal from wastewater could be achieved by using methane oxidizing bacteria (methanotrophs). Because methane is inexpensive. it can be used as an energy source to encourage bacterial growth to assimilate nitrogen and phosphorus and other trace elements. This initial feasibility study used synthetic nutrient mixtures and secondary sewage effluent as feed to a laboratory-scale methanotrophic attached-film expanded bed (MAFEB) reactor operated at 35°C and 20°C. The MAFEB system operated successfully at low nutrient concentrations under a variety of nutrient-limited conditions. Using a synthetic nutrient mixture with a nitrogen:phosphorus feed ratio (w/w) of 9:1, phosphate concentrations were reduced from 1.3 mg P/ L to below 0.1 mg P/ L, and ammonia was reduced from 12 mg N/L to approximately 1 mg N/L on a continuous flow basis, with a bed hydraulic retention time of 4.8 hours. The average nutrient uptake rates from synthetic nutrient mixtures were 100 mg nitrogen and 10 mg phosphorus/L of expanded bed/d. Nutrient assimilation rates increased with increasing growth rate and with increasing temperature. Nitrogen/phosphorus uptake ratios varied from 8 to 13, and the observed yield varied from 0.11 to 0.16 g volatile solids (VS)/g chemical oxygen demand (COD). Nutrient removal from secondary sewage effluent was successfully demonstrated using sewage effluent from two local treatment plants. Nutrient concentrations of 10-15 mg N/L and 1.0-1.8 mg P/L were reduced consistently below 1 mg N/L and 0.1 mg P/L. No supplemental nutrients were added to the sewage to attain these removal efficiencies since the nutrient mass ratios were similar to that required by the methanotrophs. Removal rates were lower at 20°C than at 35°C, but high removal efficiencies were maintained at both temperatures. Effluent suspended solids concentrations ranged from 8 to 30 mg volatile suspended solids (VSS)/L, and the effluent soluble COD concentration averaged 30 mg/L

    Effect of applied field and rate of voltage rise on surface breakdown of oil-immersed polymers

    Get PDF
    In sub-systems of high-voltage, pulsed-power machines, the introduction of a solid into bulk liquid insulation located between two conductors is often necessary to provide mechanical support. Breakdown events on or around the surface of the solid can result in permanent damage to the insulation system. Described in the present paper are experimental results pertaining to surface breakdown of five different solid dielectrics held between plane-parallel electrodes immersed in mineral oil. The effect of varying level of peak applied field from 200 kV/cm (dV/dt 70 kV/”s) to 1 MV/cm (dV/dt 350 kV/”s) is investigated, and the breakdown voltages and times to breakdown are compared to those for an open oil gap. The time to breakdown is shown to be reduced by the introduction of a solid spacer into the gap. Rexolite and Torlon samples suffered significant mechanical damage, and consistently showed lower breakdown voltage than the other materials - average streamer propagation velocity up to 125 km/s was implied by the short times to breakdown. Although ultra-high molecular weight polyethylene yielded the longest times to breakdown of the five types of liquid-solid gap, breakdown events could be initiated at lower levels of applied field for spacers of this material than those with permittivity closely matched to that of the surrounding mineral oil. Polypropylene and low-density polyethylene are concluded to provide the most stable performance in mineral oil. Due to the similarity of the applied voltage wave-shape (1/6.5 ”s) to short-tail lightning impulses, the results may also be of interest to high-voltage system designers in the power industry

    Noninvasive in vivo imaging of diabetes-induced renal oxidative stress and response to therapy using hyperpolarized 13C dehydroascorbate magnetic resonance.

    Get PDF
    Oxidative stress has been proposed to be a unifying cause for diabetic nephropathy and a target for novel therapies. Here we apply a new endogenous reduction-oxidation (redox) sensor, hyperpolarized (HP) (13)C dehydroascorbate (DHA), in conjunction with MRI to noninvasively interrogate the renal redox capacity in a mouse diabetes model. The diabetic mice demonstrate an early decrease in renal redox capacity, as shown by the lower in vivo HP (13)C DHA reduction to the antioxidant vitamin C (VitC), prior to histological evidence of nephropathy. This correlates with lower tissue reduced glutathione (GSH) concentration and higher NADPH oxidase 4 (Nox4) expression, consistent with increased superoxide generation and oxidative stress. ACE inhibition restores the HP (13)C DHA reduction to VitC with concomitant normalization of GSH concentration and Nox4 expression in diabetic mice. HP (13)C DHA enables rapid in vivo assessment of altered redox capacity in diabetic renal injury and after successful treatment

    Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses

    Get PDF
    Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 ”g·mm–2·h–1) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer (20 ”m) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by 31P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections

    A new approach to generating research-quality data through citizen science: The USA National Phenology Monitoring System

    Get PDF
    Phenology is one of the most sensitive biological responses to climate change, and recent changes in phenology have the potential to shake up ecosystems. In some cases, it appears they already are. Thus, for ecological reasons it is critical that we improve our understanding of species’ phenologies and how these phenologies are responding to recent, rapid climate change. Phenological events like flowering and bird migrations are easy to observe, culturally important, and, at a fundamental level, naturally inspire human curiosity— thus providing an excellent opportunity to engage citizen scientists. The USA National Phenology Network has recently initiated a national effort to encourage people at different levels of expertise—from backyard naturalists to professional scientists—to observe phenological events and contribute to a national database that will be used to greatly improve our understanding of spatio-temporal variation in phenology and associated phenological responses to climate change.

Traditional phenological observation protocols identify specific dates at which individual phenological events are observed. The scientific usefulness of long-term phenological observations could be improved with a more carefully structured protocol. At the USA-NPN we have developed a new approach that directs observers to record each day that they observe an individual plant, and to assess and report the state of specific life stages (or phenophases) as occurring or not occurring on that plant for each observation date. Evaluation is phrased in terms of simple, easy-to-understand, questions (e.g. “Do you see open flowers?”), which makes it very appropriate for a citizen science audience. From this method, a rich dataset of phenological metrics can be extracted, including the duration of a phenophase (e.g. open flowers), the beginning and end points of a phenophase (e.g. traditional phenological events such as first flower and last flower), multiple distinct occurrences of phenophases within a single growing season (e.g multiple flowering events, common in drought-prone regions), as well as quantification of sampling frequency and observational uncertainties. These features greatly enhance the utility of the resulting data for statistical analyses addressing questions such as how phenological events vary in time and space, and in response to global change. This new protocol is an important step forward, and its widespread adoption will increase the scientific value of data collected by citizen scientists.
&#xa

    Modifications to the von Laue statistical distribution of the times to breakdown at a polymer-oil interface

    Get PDF
    A statistical analysis has been undertaken to determine the statistical and formative times associated with breakdowns along a polymer-oil interface under impulse conditions. Early analysis was based on an assumption that the breakdown data followed the von Laue Distribution. However, it was found that in the Laue plots there were deviations from the expected straight line behavior at short times to breakdown, which may be due to a normal distribution in values of the formative times. In addition, the plots showed multiple straight line sections, which suggested that changes were occurring to the breakdown processes during the experimental run, or that more than one mechanism of breakdown was occurring. Values of the statistical time ts and the formative time tf were determined from the data by making choices on the straight line section to be considered, and ignoring the effects of the normal distribution on the derived values of ts and tf. The present paper is focused on further development of this statistical method, including a rigorous analysis of the experimental data, taking into account the effect that a normal distribution of the formative times has on the derived values of ts and tf. Optimal fits in terms of three parameters: ts, tf, and f (the standard deviation of the formative time) have been derived using Kolmogorov-Smirnov statistics to quantify the quality of fit. The quality of these fits and the applicability of this approach is discussed
    • 

    corecore