1,646 research outputs found

    Metronidazole (Flagyl): characterization as a cytotoxic drug specific for hypoxic tumour cells.

    Get PDF
    The cytocidal properties of metronidazole against hypoxic mammalian cells are described. This chemotherapeutic action has been shown to be dependent on drug concentration and duration of exposure. The x-ray TCD50 for a murine anaplastic carcinoma was reduced from 6081 rad to 4643 rad when animals were given metronidazole orally for 36 h before radiation treatment. The effect is attributed to the direct killing of hypoxic tumour cells by a mechanism analogous to that proposed for the action of the drug on anaerobic micro-organisms. It is concluded that further work with metronidazole as a cytotoxin specific for hypoxic cells is warranted, particularly in view of the reported lack of toxicity associated with the preliminary clinical use of the drug as a radiosensitizer in man

    Primary Production and Carbon Allocation in Creosotebush

    Get PDF

    Limits on I-band microvariability of the Galactic Bulge Miras

    Full text link
    We search for microvariability in a sample of 485 Mira variables with high quality I-band light curves from the second generation Optical Gravitational Lensing Experiment (OGLE-II). Rapid variations with amplitudes in the ~0.2-1.1 mag range lasting hours to days were discovered in Hipparcos data by de Laverny et al. (1998). Our search is primarily sensitive to events with time-scales of about 1 day, but retains a few percent efficiency (per object) for detecting unresolved microvariability events as short as 2 hours. We do not detect any candidate events. Assuming that the distribution of the event time profiles is identical to that from the Hipparcos light curves we derive the 95% confidence level upper limit of 0.038 per year per star for the rate of such events (1 per 26 years per average object of the ensemble). The high event rates of the order of 1 per year per star implied by the Hipparcos study in the H_P band are excluded with high confidence by the OGLE-II data in the I band. Our non-detection could still be explained by much redder spectral response of the I filter compared to the H_P band or by population differences between the bulge and the solar neighborhood. In any case, the OGLE-II I-band data provide the first limit on the rate of the postulated microvariability events in Mira stars and offer new quantitative constraints on their properties. Similar limits are obtained for other pulse shapes and a range of the assumed time-scales and size-frequency distributions.Comment: Accepted for publication in Ap

    Silicates in D-type symbiotic stars: an ISO overview

    Get PDF
    We investigate the IR spectral features of a sample of D-type symbiotic stars. Analyzing unexploited ISO-SWS data, deriving the basic observational parameters of dust bands and comparing them with respect to those observed in other astronomical sources, we try to highlight the effect of environment on grain chemistry and physic. We find strong amorphous silicate emission bands at 10 micron and 18 micron in a large fraction of the sample. The analysis of the 10 micron band, along with a direct comparison with several astronomical sources, reveals that silicate dust in symbiotic stars shows features between the characteristic circumstellar environments and the interstellar medium. This indicates an increasing reprocessing of grains in relation to specific symbiotic behavior of the objects. A correlation between the central wavelength of the 10 and 18 micron dust bands is found. By the modeling of IR spectral lines we investigate also dust grains conditions within the shocked nebulae. Both the unusual depletion values and the high sputtering efficiency might be explained by the formation of SiO moleculae, which are known to be a very reliable shock tracer. We conclude that the signature of dust chemical disturbance due to symbiotic activity should be looked for in the outer, circumbinary, expanding shells where the environmental conditions for grain processing might be achieved. Symbiotic stars are thus attractive targets for new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A

    Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core

    Full text link
    A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 yr-1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with sidereal frequency 12.85 yr-1. We find, by Monte Carlo calculations, that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10,000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 yr-1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.Comment: 22 pages, 9 tables, 10 figure

    Coupling angle variability in healthy and patellofemoral pain runners

    Get PDF
    Background Patellofemoral pain is hypothesized to result in less joint coordination variability. The ability to relate coordination variability to patellofemoral pain pathology could have many clinical uses; however, evidence to support its clinical application is lacking. The aim was to determine if vector coding's coupling angle variability, as a measure of joint coordination variability, was less for runners with patellofemoral pain than healthy controls as is commonly postulated. Methods Nineteen female recreational runners with patellofemoral pain and eleven healthy controls performed a treadmill acclimation protocol then ran at a self-selected pace for 15 min. 3-D kinematics, force plate kinetics, knee pain and rating of perceived exertion were recorded each minute. Data were selected for the: pain group at the highest pain reached (pain � 3/10) in a non-exerted state (exertion < 14/20), and; non-exerted healthy group from the eleventh minute. Coupling angle variability was calculated over several portions of the stride for six knee-ankle combinations during five non-consecutive strides. Findings 46 of 48 coupling angle variability measures were greater for the pain group, with 7 significantly greater (P <.05). Interpretation These findings oppose the theory that less coupling angle variability is indicative of a pathological coordinate state during running. Greater coupling angle variability may be characteristic of patellofemoral pain in female treadmill running when a larger threshold of pain is reached than previously observed. A predictable and directional response of coupling angle variability measures in relation to knee pathology is not yet clear and requires further investigation prior to considerations for clinical utility. © 2013 Elsevier Ltd

    The lack of carbon stars in the Galactic bulge

    Full text link
    In order to explain the lack of carbon stars in the Galactic bulge, we have made a detailed study of thermal pulse - asymptotic giant branch stars by using a population synthesis code. The effects of the oxygen overabundance and the mass loss rate on the ratio of the number of carbon stars to that of oxygen stars in the Galactic bulge are discussed. We find that the oxygen overabundance which is about twice as large as that in the solar neighbourhood (close to the present observations) is insufficient to explain the rareness of carbon stars in the bulge. We suggest that the large mass loss rate may serve as a controlling factor in the ratio of the number of carbon stars to that of oxygen stars.Comment: 16 pages, 5 figure
    corecore