165 research outputs found
Psychological Predictors of Mortality Awareness: Time Perspective, Contentment With Age and Paternal Antipathy and Neglect
Much research has focused upon the association between mortality awareness and mental ill-health. In this study we attempt to explore positive as well as negative psychological concomitants of mortality awareness. 170 participants were recruited in an online questionnaire study, measuring seven independent variables - marginalisation, childhood adversity, rebelliousness, time perspective, attitudes toward age and stage of life, health attitudes and demographics - and five dependent variables, specifically mortality legacy, mortality fearfulness, mortality acceptance, mortality disempowerment and mortality disengagement. Several significant bivariate associations were found. Follow-up regression analysis observed combined effects of variables accounting for 28% of variance in mortality legacy, 27% for mortality fearfulness, 13% for mortality acceptance, 42% for mortality disempowerment and 25% for mortality disengagement. Time perspective, contentment with age, and paternal antipathy and neglect were the most notable independent predictors. It was concluded that attitudes towards health, stage of life and childhood experiences significantly predict mortality awareness
Three-Dimensional Atlas System for Mouse and Rat Brain Imaging Data
Tomographic neuroimaging techniques allow visualization of functionally and structurally specific signals in the mouse and rat brain. The interpretation of the image data relies on accurate determination of anatomical location, which is frequently obstructed by the lack of structural information in the data sets. Positron emission tomography (PET) generally yields images with low spatial resolution and little structural contrast, and many experimental magnetic resonance imaging (MRI) paradigms give specific signal enhancements but often limited anatomical information. Side-by-side comparison of image data with conventional atlas diagram is hampered by the 2-D format of the atlases, and by the lack of an analytical environment for accumulation of data and integrative analyses. We here present a method for reconstructing 3-D atlases from digital 2-D atlas diagrams, and exemplify 3-D atlas-based analysis of PET and MRI data. The reconstruction procedure is based on two seminal mouse and brain atlases, but is applicable to any stereotaxic atlas. Currently, 30 mouse brain structures and 60 rat brain structures have been reconstructed. To exploit the 3-D atlas models, we have developed a multi-platform atlas tool (available via The Rodent Workbench, http://rbwb.org) which allows combined visualization of experimental image data within the 3-D atlas space together with 3-D viewing and user-defined slicing of selected atlas structures. The tool presented facilitates assignment of location and comparative analysis of signal location in tomographic images with low structural contrast
A New Method for Radiosynthesis of 11C-Labeled Carbamate Groups and its Application for a Highly Efficient Synthesis of the Kappa-Opioid Receptor Tracer [11C]GR103545
11C-labeled carbamates can be obtained in a three-component coupling reaction of primary or secondary amines with CO2 and 11C-methylation reagents. [11C]Methyl-triflate mediated methylation of carbamino adducts provides the corresponding 11C-labeled carbamate groups in excellent yields under mild conditions (temperatures ≤ 40°C, 2 min reaction time). The utility of the method has been demonstrated by a highly efficient radiosynthesis of [11C]GR103545
Direct comparison of activation maps during galvanic vestibular stimulation: A hybrid H-2[(15) O] PET-BOLD MRI activation study
Previous unimodal PET and fMRI studies in humans revealed a reproducible vestibular brain activation pattern, but with variations in its weighting and expansiveness. Hybrid studies minimizing methodological variations at baseline conditions are rare and still lacking for task-based designs. Thus, we applied for the first time hybrid 3T PET-MRI scanning (Siemens mMR) in healthy volunteers using galvanic vestibular stimulation (GVS) in healthy volunteers in order to directly compare (H2O)-O-15-PET and BOLD MRI responses. List mode PET acquisition started with the injection of 750 MBq (H2O)-O-15 simultaneously to MRI EPI sequences. Group-level statistical parametric maps were generated for GVS vs. rest contrasts of PET, MR-onset (event-related), and MR-block. All contrasts showed a similar bilateral vestibular activation pattern with remarkable proximity of activation foci. Both BOLD contrasts gave more bilateral wide-spread activation clusters than PET;no area showed contradictory signal responses. PET still confirmed the right-hemispheric lateralization of the vestibular system, whereas BOLD-onset revealed only a tendency. The reciprocal inhibitory visual-vestibular interaction concept was confirmed by PET signal decreases in primary and secondary visual cortices, and BOLD-block decreases in secondary visual areas. In conclusion, MRI activation maps contained a mixture of CBF measured using (H2O)-O-15-PET and additional non-CBF effects, and the activation-deactivation pattern of the BOLD-block appears to be more similar to the (H2O)-O-15-PET than the BOLD-onset
Imaging of opioid receptors in the central nervous system
In vivo functional imaging by means of positron emission tomography (PET) is the sole method for providing a quantitative measurement of μ-, κ and δ-opioid receptor-mediated signalling in the central nervous system. During the last two decades, measurements of changes to the regional brain opioidergic neuronal activation—mediated by endogenously produced opioid peptides, or exogenously administered opioid drugs—have been conducted in numerous chronic pain conditions, in epilepsy, as well as by stimulant- and opioidergic drugs. Although several PET-tracers have been used clinically for depiction and quantification of the opioid receptors changes, the underlying mechanisms for regulation of changes to the availability of opioid receptors are still unclear. After a presentation of the general signalling mechanisms of the opioid receptor system relevant for PET, a critical survey of the pharmacological properties of some currently available PET-tracers is presented. Clinical studies performed with different PET ligands are also reviewed and the compound-dependent findings are summarized. An outlook is given concluding with the tailoring of tracer properties, in order to facilitate for a selective addressment of dynamic changes to the availability of a single subclass, in combination with an optimization of the quantification framework are essentials for further progress in the field of in vivo opioid receptor imaging
Recommended from our members
Sweet taste pleasantness is modulated by morphine and naltrexone
Rodent models highlight the key role of µ-opioid receptor (MOR) signaling in palatable food consumption. In humans however, the effects of MOR stimulation on eating and food liking remain unclear. In a bidirectional psychopharmacological cross-over study, 49 healthy men underwent a sweet taste paradigm following double-blind administration of the MOR agonist morphine, placebo, and the opioid antagonist nalt rexone. We hypothesized that behaviors regulated by the endogenous MOR system would be enhanced by MOR agonism, and decreased by antagonism. The strongest drug effects were expected for the sweetest (high-calorie) sucrose solution, as reported in rodents. However, very sweet sucrose-water solutions are considered sickly and aversive by many people (called sweet dislikers). Since both sweet likers and dislikers were tested, we were able to assess whether MOR manipulations affect pleasantness ratings differently depending on both subjective and objective value. As hypothesized, MOR stimulation with morphine increased pleasantness of the sweetest of five sucrose solutions, without enhancing pleasantness of the lower-sucrose solutions. For opioid antagonism, an opposite pattern was observed for the sweetest drink only. This bidirectional effect of agonist and antagonist treatment is consistent with rodent findings that MOR manipulations most strongly affect the highest-calorie foods. Importantly, the observed drug effects on pleasantness of the sweetest drink did not differ between sweet likers and dislikers. We speculate that the MOR system promotes survival in part by increasing concordance between the objective (caloric) and subjective (hedonic) value of food stimuli, so that feeding behaviour becomes more focused on the richest food available
- …