5,061 research outputs found
A climatically-derived global soil moisture data set for use in the GLAS atmospheric circulation model seasonal cycle experiment
Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent
On the design of an interactive biosphere for the GLAS general circulation model
Improving the realism and accuracy of the GLAS general circulation model (by adding an interactive biosphere that will simulate the transfers of latent and sensible heat from land surface to atmosphere as functions of the atmospheric conditions and the morphology and physiology of the vegetation) is proposed
Measurement of Newtonian fluid slip using a torsional ultrasonic oscillator
The composite torsional ultrasonic oscillator, a versatile experimental
system, can be used to investigate slip of Newtonian fluid at a smooth surface.
A rigorous analysis of slip-dependent damping for the oscillator is presented.
Initially, the phenomenon of finite surface slip and the slip length are
considered for a half-space of Newtonian fluid in contact with a smooth,
oscillating solid surface. Definitions are revisited and clarified in light of
inconsistencies in the literature. We point out that, in general oscillating
flows, Navier's slip length b is a complex number. An intuitive velocity
discontinuity parameter of unrestricted phase is used to describe the effect of
slip on measurement of viscous shear damping. The analysis is applied to the
composite oscillator and preliminary experimental work for a 40 kHz oscillator
is presented. The Non-Slip Boundary Condition (NSBC) has been verified for a
hydrophobic surface in water to within ~60 nm of |b|=0 nm. Experiments were
carried out at shear rate amplitudes between 230 and 6800 /s, corresponding to
linear displacement amplitudes between 3.2 and 96 nm.Comment: Revised with minor edits for revie
Thermal near infrared monitoring system for electron beam melting with emissivity tracking
This paper presents the design of a high speed, high resolution silicon based thermal imaging instrument and its application to thermally image the temperature distributions of an electron beam melting additive manufacturing system. Typically, thermal images are produced at mid or long wavelengths of infrared radiation. Using the shorter wavelengths that silicon focal plane arrays are sensitive to allows the use of standard windows in the optical path. It also affords fewer modifications to the machine and enables us to make use of mature silicon camera technology. With this new instrument, in situ thermal imaging of the entire build area has been made possible at high speed, allowing defect detection and melt pool tracking. Melt pool tracking was used to implement an emissivity correction algorithm, which produced more accurate temperatures of the melted areas of the layer
Evolution of the interfacial structure of LaAlO3 on SrTiO3
The evolution of the atomic structure of LaAlO3 grown on SrTiO3 was
investigated using surface x-ray diffraction in conjunction with
model-independent, phase-retrieval algorithms between two and five monolayers
film thickness. A depolarizing buckling is observed between cation and oxygen
positions in response to the electric field of polar LaAlO3, which decreases
with increasing film thickness. We explain this in terms of competition between
elastic strain energy, electrostatic energy, and electronic reconstructions.
The findings are qualitatively reproduced by density-functional theory
calculations. Significant cationic intermixing across the interface extends
approximately three monolayers for all film thicknesses. The interfaces of
films thinner than four monolayers therefore extend to the surface, which might
affect conductivity
Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy
The one-dimensional reconstruction of Au/Ge(001) was investigated by means of
autocorrelation functions from surface x-ray diffraction (SXRD) and scanning
tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson
map are substantiated by results from STM. The Au coverage, recently determined
to be 3/4 of a monolayer of gold, together with SXRD leads to three
non-equivalent positions for Au within the c(8x2) unit cell. Combined with
structural information from STM topography and line profiling, two building
blocks are identified: Au-Ge hetero-dimers within the top wire architecture and
Au homo-dimers within the trenches. The incorporation of both components is
discussed using density functional theory and model based Patterson maps by
substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure
Measurement of the Fermi Constant by FAST
An initial measurement of the lifetime of the positive muon to a precision of
16 parts per million (ppm) has been performed with the FAST detector at the
Paul Scherrer Institute. The result is tau_mu = 2.197083 (32) (15) microsec,
where the first error is statistical and the second is systematic. The muon
lifetime determines the Fermi constant, G_F = 1.166353 (9) x 10^-5 GeV^-2 (8
ppm).Comment: 15 pages, 6 figure
The electronic structure of LaSrMnO thin films and its dependence as studied by angle-resolved photoemission
We present angle-resolved photoemission spectroscopy results for thin films
of the three-dimensional manganese perovskite LaSrMnO. We
show that the transition temperature () from the paramagnetic insulating
to ferromagnetic metallic state is closely related to details of the electronic
structure, particularly to the spectral weight at the -point, where
the sharpest step at the Fermi level was observed. We found that this -point is the same for all the samples, despite their different . The
change of is discussed in terms of kinetic energy optimization. Our ARPES
results suggest that the change of the electronic structure for the samples
having different transition temperatures is different from the rigid band
shift.Comment: Accepted by Journal of Physics: Condensed Matte
- …