1,457 research outputs found
Muonium-antimuonium conversion in models with heavy neutrinos
We study muonium-antimuonium conversion and mu+ e- to mu- e+ scattering
within two different lepton-flavor-violating models with heavy neutrinos: model
I is a typical seesaw that violates lepton number as well as flavor; model II
has a neutrino mass texture where lepton number is conserved. We look for the
largest possible amplitudes of these processes that are consistent with current
bounds. We find that model I has very limited chance of providing an observable
signal, except if a finely tuned condition in parameter space occurs. Model II,
on the other hand, requires no fine tuning and could cause larger effects.
However, the maximum amplitude provided by this model is still two orders of
magnitude below the sensitivity of current experiments: one predicts an
effective coupling G_MM up to 10^{-4}G_F for heavy neutrino masses near 10 TeV.
We have also clarified some discrepancies in previous literature on this
subject.Comment: 16 pages, 4 figures, reference adde
Rigorous results on spontaneous symmetry breaking in a one-dimensional driven particle system
We study spontaneous symmetry breaking in a one-dimensional driven
two-species stochastic cellular automaton with parallel sublattice update and
open boundaries. The dynamics are symmetric with respect to interchange of
particles. Starting from an empty initial lattice, the system enters a symmetry
broken state after some time T_1 through an amplification loop of initial
fluctuations. It remains in the symmetry broken state for a time T_2 through a
traffic jam effect. Applying a simple martingale argument, we obtain rigorous
asymptotic estimates for the expected times ~ L ln(L) and ln() ~ L,
where L is the system size. The actual value of T_1 depends strongly on the
initial fluctuation in the amplification loop. Numerical simulations suggest
that T_2 is exponentially distributed with a mean that grows exponentially in
system size. For the phase transition line we argue and confirm by simulations
that the flipping time between sign changes of the difference of particle
numbers approaches an algebraic distribution as the system size tends to
infinity.Comment: 23 pages, 7 figure
First Test of Lorentz Invariance in the Weak Decay of Polarized Nuclei
A new test of Lorentz invariance in the weak interactions has been made by
searching for variations in the decay rate of spin-polarized 20Na nuclei. This
test is unique to Gamow-Teller transitions, as was shown in the framework of a
recently developed theory that assumes a Lorentz symmetry breaking background
field of tensor nature. The nuclear spins were polarized in the up and down
direction, putting a limit on the amplitude of sidereal variations of the form
|(\Gamma_{up} - \Gamma_{down})| / (\Gamma_{up} + \Gamma_{down}) < 3 * 10^{-3}.
This measurement shows a possible route toward a more detailed testing of
Lorentz symmetry in weak interactions.Comment: 11 pages, 6 figure
Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen
We have observed the cold collision frequency shift of the 1S-2S transition
in trapped spin-polarized atomic hydrogen. We find , where is the sample density. From this
we derive the 1S-2S s-wave triplet scattering length, nm,
which is in fair agreement with a recent calculation. The shift provides a
valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures,
ReVTeX. Updated connection of our measurement to theoretical wor
On-line Excited-State Laser Spectroscopy of Trapped Short-Lived Ra Ions
As an important step towards an atomic parity violation experiment in one
single trapped Ra ion, laser spectroscopy experiments were performed with
on-line produced short-lived Ra ions. The isotope shift of
the D\,-\,P and
D\,-\,P transitions and the hyperfine structure
constant of the S and D states in Ra
were measured. These values provide a benchmark for the required atomic theory.
A lower limit of ms for the lifetime of the metastable
D state was measured by optical shelving.Comment: 4.2 pages, 6 figures, 2 tables
Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic
First we consider a unidirectional flux \omega_bar of vehicles each of which
is characterized by its `natural' velocity v drawn from a distribution P(v).
The traffic flow is modeled as a collection of straight `world lines' in the
time-space plane, with overtaking events represented by a fixed queuing time
tau imposed on the overtaking vehicle. This geometrical model exhibits platoon
formation and allows, among many other things, for the calculation of the
effective average velocity w=\phi(v) of a vehicle of natural velocity v.
Secondly, we extend the model to two opposite lanes, A and B. We argue that the
queuing time \tau in one lane is determined by the traffic density in the
opposite lane. On the basis of reasonable additional assumptions we establish a
set of equations that couple the two lanes and can be solved numerically. It
appears that above a critical value \omega_bar_c of the control parameter
\omega_bar the symmetry between the lanes is spontaneously broken: there is a
slow lane where long platoons form behind the slowest vehicles, and a fast lane
where overtaking is easy due to the wide spacing between the platoons in the
opposite direction. A variant of the model is studied in which the spatial
vehicle density \rho_bar rather than the flux \omega_bar is the control
parameter. Unequal fluxes \omega_bar_A and \omega_bar_B in the two lanes are
also considered. The symmetry breaking phenomenon exhibited by this model, even
though no doubt hard to observe in pure form in real-life traffic, nevertheless
indicates a tendency of such traffic.Comment: 50 pages, 16 figures; extra references adde
Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model
A two species particle model on an open chain with dynamics which is
non-conserving in the bulk is introduced. The dynamical rules which define the
model obey a symmetry between the two species. The model exhibits a rich
behavior which includes spontaneous symmetry breaking and localized shocks. The
phase diagram in several regions of parameter space is calculated within
mean-field approximation, and compared with Monte-Carlo simulations. In the
limit where fluctuations in the number of particles in the system are taken to
zero, an exact solution is obtained. We present and analyze a physical picture
which serves to explain the different phases of the model
Revising Neutrino Oscillation Parameter Space With Direct Flavor-Changing Interactions
We formulate direct, neutrino flavor-changing interactions in a framework
that fits smoothly with the parameterization of two-and three-state mixing of
massive neutrino states. We show that even small direct interaction strengths
could have important consequences for the interpretation of currently running
and proposed oscillation experiments. The oscillation amplitude and the borders
of the allowed regions in two-and three-flavor mixing parameter space can be
sensitieve to the presence of direct interactions when the transition
probability is small. We use extensively the high sensitivity of the NOMAD
experiment to illustrate potentially large effects from small, direct flavor
violation. In the purely leptonic sector, we find that the clean muon neutrino
and electron neutrino beams from a muon collider could provide the sharpest
tests of direct flavor violation.Comment: 16 pages, 10 figure
Aspects of Cooling at the TRIP Facility
The TriP facility at KVI is dedicated to provide short lived radioactive
isotopes at low kinetic energies to users. It comprised different cooling
schemes for a variety of energy ranges, from GeV down to the neV scale. The
isotopes are produced using beam of the AGOR cyclotron at KVI. They are
separated from the primary beam by a magnetic separator. A crucial part of such
a facility is the ability to stop and extract isotopes into a low energy
beamline which guides them to the experiment. In particular we are
investigating stopping in matter and buffer gases. After the extraction the
isotopes can be stored in neutral atoms or ion traps for experiments. Our
research includes precision studies of nuclear -decay through
- momentum correlations as well as searches for permanent electric
dipole moments in heavy atomic systems like radium. Such experiments offer a
large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3
figure
Measurement of the half-life of the T= mirror decay of Ne and its implication on physics beyond the standard model
The superallowed mixed mirror decay
of Ne to F is excellently suited for high precision studies of
the weak interaction. However, there is some disagreement on the value of the
half-life. In a new measurement we have determined this quantity to be
= s, which differs
from the previous world average by 3 standard deviations. The impact of this
measurement on limits for physics beyond the standard model such as the
presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl
- …
