476 research outputs found
Quantifying Equivocation for Finite Blocklength Wiretap Codes
This paper presents a new technique for providing the analysis and comparison
of wiretap codes in the small blocklength regime over the binary erasure
wiretap channel. A major result is the development of Monte Carlo strategies
for quantifying a code's equivocation, which mirrors techniques used to analyze
normal error correcting codes. For this paper, we limit our analysis to
coset-based wiretap codes, and make several comparisons of different code
families at small and medium blocklengths. Our results indicate that there are
security advantages to using specific codes when using small to medium
blocklengths.Comment: Submitted to ICC 201
Using high-fidelity simulation for critical event training
What problems were addressed? Paediatric emergencies are infrequent, but can rapidly become disastrous as the limited reserve of the paediatric patient may afford only seconds for the making of appropriate clinical decisions. Operating room (OR) staff are essential to ensuring the appropriate initial steps to stabilise the patient are taken
BrainWAVE: A flexible method for noninvasive stimulation of brain rhythms across species
Rhythmic neural activity, which coordinates brain regions and neurons to achieve multiple brain functions, is impaired in many diseases. Despite the therapeutic potential of driving brain rhythms, methods to noninvasively target deep brain regions are limited. Accordingly, we recently introduced a noninvasive stimulation approach using flickering lights and sounds ( flicker ). Flicker drives rhythmic activity in deep and superficial brain regions. Gamma flicker spurs immune function, clears pathogens, and rescues memory performance in mice with amyloid pathology. Here, we present substantial improvements to this approach that is flexible, user-friendly, and generalizable across multiple experimental settings and species. We present novel open-source methods for flicker stimulation across rodents and humans. We demonstrate rapid, cross-species induction of rhythmic activity without behavioral confounds in multiple settings from electrophysiology to neuroimaging. This flicker approach provides an exceptional opportunity to discover the therapeutic effects of brain rhythms across scales and species
Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome
Multiple synostoses syndrome 2 (SYNS2) is a rare genetic disease characterized by multiple fusions of the joints of the extremities, like phalangeal joints, carpal and tarsal joints or the knee and elbows. SYNS2 is caused by point mutations in the Growth and Differentiation Factor 5 (GDF5), which plays an essential role during skeletal development and regeneration. We selected one of the SYNS2-causing GDF5 mutations, p.N445T, which is known to destabilize the interaction with the Bone Morphogenetic Protein (BMP) antagonist NOGGIN (NOG), in order to generate the superagonistic GDF5 variant GDF5(N445T). In this study, we tested its capacity to support regeneration in a rat critical-sized defect model in vivo. MicroCT and histological analyses indicate that GDF5(N445T)-treated defects show faster and more efficient healing compared to GDF5 wild type (GDF5(wt))-treated defects. Microarray-based gene expression and quantitative PCR analyses from callus tissue point to a specific acceleration of the early phases of bone healing, comprising the inflammation and chondrogenesis phase. These results support the concept that disease-deduced growth factor variants are promising lead structures for novel therapeutics with improved clinical activities
Multisensory flicker modulates widespread brain networks and reduces interictal epileptiform discharges
Modulating brain oscillations has strong therapeutic potential. Interventions that both non-invasively modulate deep brain structures and are practical for chronic daily home use are desirable for a variety of therapeutic applications. Repetitive audio-visual stimulation, or sensory flicker, is an accessible approach that modulates hippocampus in mice, but its effects in humans are poorly defined. We therefore quantified the neurophysiological effects of flicker with high spatiotemporal resolution in patients with focal epilepsy who underwent intracranial seizure monitoring. In this interventional trial (NCT04188834) with a cross-over design, subjects underwent different frequencies of flicker stimulation in the same recording session with the effect of sensory flicker exposure on local field potential (LFP) power and interictal epileptiform discharges (IEDs) as primary and secondary outcomes, respectively. Flicker focally modulated local field potentials in expected canonical sensory cortices but also in the medial temporal lobe and prefrontal cortex, likely via resonance of stimulated long-range circuits. Moreover, flicker decreased interictal epileptiform discharges, a pathological biomarker of epilepsy and degenerative diseases, most strongly in regions where potentials were flicker-modulated, especially the visual cortex and medial temporal lobe. This trial met the scientific goal and is now closed. Our findings reveal how multi-sensory stimulation may modulate cortical structures to mitigate pathological activity in humans
Determination of trace elements in natural water samples by air-segmented flow-injection/ICP-MS after preconcentration with a chitosan-based chelating resin
本法では,各種天然水中の極微量金属成分を同時定量する目的で空気分節試料導入/ICP-MSシステムを用いて,微少量試料(数十μl)を前処理せずにネブライザーに送り込み,多数の金属成分の定量が可能であった。共存主成分による質量干渉を受ける一部遷移金属や直接試料導入では感度の足りない元素については,イミノ二酢酸型キトサンキレート樹脂充填カラムによる分離·濃縮操作の併用によって更に信頼性の高いデータが得られることが分かった。前処理においては,体積1mlのミニカラムを用いて50mlの溶液試料から50倍濃縮を行い,試料·試薬·廃液すべてを少量化することができた。本ICP-MSシステムでは試料導入量は80μlで十分であり,1mlでも数回繰り返し測定が可能で,しかも多元素同時分析ができた。確立した分析法を用いて河川水や市販のミネラルウォーターに応用し,希土類を含め45種の微量元素の定量が可能となった。Ultratrace elements in natural water samples were determined simultaneously by air-segmented flow-injection/inductively coupled plasma-mass spectrometry(SFI/ICP-MS).A small volume of the sample solutions(80μl) was introduced into a nebulizer by an air-segmented flow-injection(SFI) system, and a maximum of fifteen elements were measured during each run.A chitosan-based chelating resin containing functional groups of iminodiacetate was used to separate and enrich analyte metal ions.A 50-fold preconcentration using 50ml of sample solutions was achieved by the proposed method, where 1ml of 0.1M nitric acid was added to residues after drying the chelating column effluent.At pH6, several heavy metals(Fe, Ni, Co, Cu, Zn, Ag, Cd, Pb and U) and rare earth elements(REEs) were quantitatively retained on the chelating resin column, whereas alkali and alkaline earth metals were eluted from the column by rinsing with 5ml of a 0.2M ammonium acetate solution.Metals adsorbed on the chelating resin column were recovered by elution with 10ml of 1M nitric acid.The proposed method was applied to the determination of trace elements in several natural water samples, such as river water and mineral drinking water
UBC-Nepal Expedition: An experimental overview of the 2016 University of British Columbia Scientific Expedition to Nepal Himalaya
The University of British Columbia Nepal Expedition took place over several months in the fall of 2016 and was comprised of an international team of 37 researchers. This paper describes the objectives, study characteristics, organization and management of this expedition, and presents novel blood gas data during acclimatization in both lowlanders and Sherpa. An overview and framework for the forthcoming publications is provided. The expedition conducted 17 major studies with two principal goals—to identify physiological differences in: 1) acclimatization; and 2) responses to sustained high-altitude exposure between lowland natives and people of Tibetan descent. We performed observational cohort studies of human responses to progressive hypobaric hypoxia (during ascent), and to sustained exposure to 5050 m over 3 weeks comparing lowlander adults (n = 30) with Sherpa adults (n = 24). Sherpa were tested both with (n = 12) and without (n = 12) descent to Kathmandu. Data collected from lowlander children (n = 30) in Canada were compared with those collected from Sherpa children (n = 57; 3400–3900m). Studies were conducted in Canada (344m) and the following locations in Nepal: Kathmandu (1400m), Namche Bazaar (3440m), Kunde Hospital (3480m), Pheriche (4371m) and the Ev-K2-CNR Research Pyramid Laboratory (5050m). The core studies focused on the mechanisms of cerebral blood flow regulation, the role of iron in cardiopulmonary regulation, pulmonary pressures, intra-ocular pressures, cardiac function, neuromuscular fatigue and function, blood volume regulation, autonomic control, and micro and macro vascular function. A total of 335 study sessions were conducted over three weeks at 5050m. In addition to an overview of this expedition and arterial blood gas data from Sherpa, suggestions for scientists aiming to perform field-based altitude research are also presented. Together, these findings will contribute to our understanding of human acclimatization and adaptation to the stress of residence at high-altitude
Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response
Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation
Task shifting and integration of HIV care into primary care in South Africa: The development and content of the streamlining tasks and roles to expand treatment and care for HIV (STRETCH) intervention
Background: Task shifting and the integration of human immunodeficiency virus (HIV) care into primary care services have been identified as possible strategies for improving access to antiretroviral treatment (ART). This paper describes the development and content of an intervention involving these two strategies, as part of the Streamlining Tasks and Roles to Expand Treatment and Care for HIV (STRETCH) pragmatic randomised controlled trial. Methods: Developing the intervention: The intervention was developed following discussions with senior management, clinicians, and clinic staff. These discussions revealed that the establishment of separate antiretroviral treatment services for HIV had resulted in problems in accessing care due to the large number of patients at ART clinics. The intervention developed therefore combined the shifting from doctors to nurses of prescriptions of antiretrovirals (ARVs) for uncomplicated patients and the stepwise integration of HIV care into primary care services. Results: Components of the intervention: The intervention consisted of regulatory changes, training, and guidelines to support nurse ART prescription, local management teams, an implementation toolkit, and a flexible, phased introduction. Nurse supervisors were equipped to train intervention clinic nurses in ART prescription using outreach education and an integrated primary care guideline. Management teams were set up and a STRETCH coordinator was appointed to oversee the implementation process. Discussion: Three important processes were used in developing and implementing this intervention: active participation of clinic staff and local and provincial management, educational outreach to train nurses in intervention sites, and an external facilitator to support all stages of the intervention rollout
Health Visiting and School Nursing Programmes: supporting implementation of the new service model No.5: Domestic Violence and Abuse – Professional Guidance
Guidance created by an expert working group at the Department of Healt
- …