2,758 research outputs found
Childhood dairy and calcium intake and cardiovascular mortality in adulthood: 65-year follow-up of the Boyd Orr cohort
Background: Dairy consumption in childhood may have long-term effects on cardiovascular mortality through influencing the development of risk factors or programming effects. Objective: To investigate whether dairy and calcium consumption in childhood is associated with adult mortality due to coronary heart disease (CHD), stroke and all causes. Methods: In 1937-9, 4999 children in England and Scotland participated in a study of family food consumption, assessed from 7-day household food inventories. Cause of death was ascertained between 1948 and 2005 in 4374 traced cohort members with complete data. Per capita household intake estimates for dairy products and calcium were used as proxies for individual intake. Results: No strong evidence that a family diet in childhood high in dairy products was associated with CHD or stroke mortality was found. However, childhood calcium intake was inversely associated with stroke mortality (multivariable adjusted hazard ratio (HR) for highest versus lowest calcium group: 0.41; 95% confidence interval (CI) 0.16 to 1.05; p for trend=0.04), but not CHD mortality. All-cause mortality was lowest in those with the highest family dairy (HR=0.77; 95% CI 0.61 to 0.98; p for trend=0.04) and calcium intake (HR=0.77, 95% CI 0.60 to 0.98; p for trend=0.05). Conclusions: Children whose family diet in the 1930s was high in calcium were at reduced risk of death from stroke. Furthermore, childhood diets rich in dairy or calcium were associated with lower all-cause mortality in adulthood. Replication in other study populations is needed to determine whether residual confounding explains part of these findings
Annexin-enriched osteoblast-derived vesicles act as an extracellular site of mineral nucleation within developing stem cell cultures
The application of extracellular vesicles (EVs) as natural delivery vehicles capable of enhancing tissue regeneration could represent an exciting new phase in medicine. We sought to define the capacity of EVs derived from mineralising osteoblasts (MO-EVs) to induce mineralisation in mesenchymal stem cell
(MSC) cultures and delineate the underlying biochemical mechanisms involved. Strikingly, we show that the addition of MO-EVs to MSC cultures significantly (P < 0.05) enhanced the expression of alkaline phosphatase, as well as the rate and volume of mineralisation beyond the current gold-standard, BMP-2. Intriguingly, these effects were only observed in the presence of an exogenous phosphate source.
EVs derived from non-mineralising osteoblasts (NMO-EVs) were not found to enhance mineralisation beyond the control. Comparative label-free LC-MS/MS profiling of EVs indicated that enhanced mineralisation could be attributed to the delivery of bridging collagens, primarily associated with osteoblast communication, and other non-collagenous proteins to the developing extracellular matrix.
In particular, EV-associated annexin calcium channelling proteins, which form a nucleational core with the phospholipid-rich membrane and support the formation of a pre-apatitic mineral phase, which was identified using infrared spectroscopy. These findings support the role of EVs as early sites of mineral nucleation and demonstrate their value for promoting hard tissue regeneration
Chemical telemetry of OH observed to measure interstellar magnetic fields
We present models for the chemistry in gas moving towards the ionization
front of an HII region. When it is far from the ionization front, the gas is
highly depleted of elements more massive than helium. However, as it approaches
the ionization front, ices are destroyed and species formed on the grain
surfaces are injected into the gas phase. Photodissociation removes gas phase
molecular species as the gas flows towards the ionization front. We identify
models for which the OH column densities are comparable to those measured in
observations undertaken to study the magnetic fields in star forming regions
and give results for the column densities of other species that should be
abundant if the observed OH arises through a combination of the liberation of
H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S.
Observations of these other species may help establish the nature of the OH
spatial distribution in the clouds, which is important for the interpretation
of the magnetic field results.Comment: 11 pages, 2 figures, accepted by Astrophysics and Space Scienc
Introduction to Loop Quantum Gravity
This article is based on the opening lecture at the third quantum geometry
and quantum gravity school sponsored by the European Science Foundation and
held at Zakopane, Poland in March 2011. The goal of the lecture was to present
a broad perspective on loop quantum gravity for young researchers. The first
part is addressed to beginning students and the second to young researchers who
are already working in quantum gravity.Comment: 30 pages, 2 figures. arXiv admin note: substantial text overlap with
arXiv:gr-qc/041005
Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations
We study the convergence and the stability of fictitious dynamical methods
for electrons. First, we show that a particular damped second-order dynamics
has a much faster rate of convergence to the ground-state than first-order
steepest descent algorithms while retaining their numerical cost per time step.
Our damped dynamics has efficiency comparable to that of conjugate gradient
methods in typical electronic minimization problems. Then, we analyse the
factors that limit the size of the integration time step in approaches based on
plane-wave expansions. The maximum allowed time step is dictated by the highest
frequency components of the fictitious electronic dynamics. These can result
either from the large wavevector components of the kinetic energy or from the
small wavevector components of the Coulomb potential giving rise to the so
called {\it charge sloshing} problem. We show how to eliminate large wavevector
instabilities by adopting a preconditioning scheme that is implemented here for
the first-time in the context of Car-Parrinello ab-initio molecular dynamics
simulations of the ionic motion. We also show how to solve the charge-sloshing
problem when this is present. We substantiate our theoretical analysis with
numerical tests on a number of different silicon and carbon systems having both
insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.
Manageable creativity
This article notes a perception in mainstream management theory and practice that creativity has shifted from being disruptive or destructive to 'manageable'. This concept of manageable creativity in business is reflected in a similar rhetoric in cultural policy, especially towards the creative industries. The article argues that the idea of 'manageable creativity' can be traced back to a 'heroic' and a 'structural' model of creativity. It is argued that the 'heroic' model of creativity is being subsumed within a 'structural' model which emphasises the systems and infrastructure around individual creativity rather than focusing on raw talent and pure content. Yet this structured approach carries problems of its own, in particular a tendency to overlook the unpredictability of creative processes, people and products. Ironically, it may be that some confusion in our policies towards creativity is inevitable, reflecting the paradoxes and transitions which characterise the creative process
- âŠ