7 research outputs found

    Redsharc: A Programming Model and On-Chip Network for Multi-Core Systems on a Programmable Chip

    Get PDF
    The reconfigurable data-stream hardware software architecture (Redsharc) is a programming model and network-on-a-chip solution designed to scale to meet the performance needs of multi-core Systems on a programmable chip (MCSoPC). Redsharc uses an abstract API that allows programmers to develop systems of simultaneously executing kernels, in software and/or hardware, that communicate over a seamless interface. Redsharc incorporates two on-chip networks that directly implement the API to support high-performance systems with numerous hardware kernels. This paper documents the API, describes the common infrastructure, and quantifies the performance of a complete implementation. Furthermore, the overhead, in terms of resource utilization, is reported along with the ability to integrate hard and soft processor cores with purely hardware kernels being demonstrated

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Feasibility of serial ATA cables for the physical link in high performance computing clusters

    Get PDF
    Thesis (M.S.)--University of Kansas, Electrical Engineering and Computer Science, 2007.A novel solution for inexpensive computing cluster networks is proposed and tested for feasibility. The network uses Serial ATA cables---commonly used in personal computers for connecting hard drives---as the physical media for connecting nodes in the computing cluster. The compute nodes, based on a Xilinx Platform FPGA, contain both microprocessors and high speed serial transceivers (that drive the SATA cables). If viable, the approach leads to a very cost-effective communication network. Experimental results do show that a computing cluster network based on SATA cables is feasible and that the cables provide adequately error-free transmission for lengths up to 10 meters

    An Evaluation of an Integrated On-Chip/Off-Chip Network for High-Performance Reconfigurable Computing

    No full text
    As the number of cores per discrete integrated circuit (IC) device grows, the importance of the network on chip (NoC) increases. However, the body of research in this area has focused on discrete IC devices alone which may or may not serve the high-performance computing community which needs to assemble many of these devices into very large scale, parallel computing machines. This paper describes an integrated on-chip/off-chip network that has been implemented on an all-FPGA computing cluster. The system supports MPI-style point-to-point messages, collectives, and other novel communication. Results include the resource utilization and performance (in latency and bandwidth)

    Is diet partly responsible for differences in COVID-19 death rates between and within countries?

    No full text

    Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates: Synthesis, Structure, Transformations, and Applications

    No full text
    corecore