19 research outputs found

    Changes in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression Model

    Get PDF
    BACKGROUND: Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCβII. CONCLUSIONS/SIGNIFICANCE: Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression

    Multiple Phosphatidylinositol 3-Kinases Regulate Vaccinia Virus Morphogenesis

    Get PDF
    Poxvirus morphogenesis is a complex process that involves the successive wrapping of the virus in host cell membranes. We screened by plaque assay a focused library of kinase inhibitors for those that caused a reduction in viral growth and identified several compounds that selectively inhibit phosphatidylinositol 3-kinase (PI3K). Previous studies demonstrated that PI3Ks mediate poxviral entry. Using growth curves and electron microscopy in conjunction with inhibitors, we show that that PI3Ks additionally regulate morphogenesis at two distinct steps: immature to mature virion (IMV) transition, and IMV envelopment to form intracellular enveloped virions (IEV). Cells derived from animals lacking the p85 regulatory subunit of Type I PI3Ks (p85α−/−β−/−) presented phenotypes similar to those observed with PI3K inhibitors. In addition, VV appear to redundantly use PI3Ks, as PI3K inhibitors further reduce plaque size and number in p85α−/−β−/− cells. Together, these data provide evidence for a novel regulatory mechanism for virion morphogenesis involving phosphatidylinositol dynamics and may represent a new therapeutic target to contain poxviruses

    Perspectives in Global Helioseismology, and the Road Ahead

    Get PDF
    We review the impact of global helioseismology on key questions concerning the internal structure and dynamics of the Sun, and consider the exciting challenges the field faces as it enters a fourth decade of science exploitation. We do so with an eye on the past, looking at the perspectives global helioseismology offered in its earlier phases, in particular the mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer datasets coupled with new developments in analysis, have altered, refined, and changed some of those perspectives, and opened others that were not previously available for study. We finish by discussing outstanding challenges and questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures

    Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis

    Get PDF
    Antineutrophil cytoplasmic autoantibody (ANCA) causes vascular injury that leads to small-vessel vasculitis. Patients with ANCA aberrantly express neutrophil granule–encoding genes, including 2 that encode autoantigens: proteinase 3 (PR3) and myeloperoxidase (MPO). To uncover a potential transcriptional regulatory mechanism for PR3 and MPO disrupted in patients with ANCA vasculitis, we examined the PR3 and MPO loci in neutrophils from ANCA patients and healthy control individuals for epigenetic modifications associated with gene silencing. We found that levels of the chromatin modification H3K27me3, which is associated with gene silencing, were depleted at PR3 and MPO loci in ANCA patients compared with healthy controls. Interestingly, in both patients and controls, DNA was unmethylated at a CpG island in PR3, whereas in healthy controls, DNA was methylated at a CpG island in MPO. Consistent with decreased levels of H3K27me3, JMJD3, the demethylase specific for H3K27me3, was preferentially expressed in ANCA patients versus healthy controls. In addition, we describe a mechanism for recruiting the H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) to PR3 and MPO loci mediated by RUNX3. RUNX3 message was decreased in patients compared with healthy controls, and may also be under epigenetic control. DNA methylation was increased at the RUNX3 promoter in ANCA patients. These data indicate that epigenetic modifications associated with gene silencing are perturbed at ANCA autoantigen–encoding genes, potentially contributing to inappropriate expression of PR3 and MPO in ANCA patients
    corecore