193 research outputs found
Binney and Bland collection of mollusks
p. 335-403, [6] leaves of plates : col. maps ; 24 cm.Includes bibliographical references
Validity of the Polar V800 heart rate monitor to measure RR intervals at rest
Purpose To assess the validity of RR intervals and short-term heart rate variability (HRV) data obtained from the Polar V800 heart rate monitor, in comparison to an electrocardiograph (ECG). Method Twenty participants completed an active orthostatic test using the V800 and ECG. An improved method for the identification and correction of RR intervals was employed prior to HRV analysis. Agreement of the data was assessed using intra-class correlation coefficients (ICC), Bland–Altman limits of agreement (LoA), and effect size (ES). Results A small number of errors were detected between ECG and Polar RR signal, with a combined error rate of 0.086 %. The RR intervals from ECG to V800 were significantly different, but with small ES for both supine corrected and standing corrected data (ES 0.999 for both supine and standing corrected intervals. When analysed with the same HRV software no significant differences were observed in any HRV parameters, for either supine or standing; the data displayed small bias and tight LoA, strong ICC (>0.99) and small ES (≤0.029). Conclusions The V800 improves over previous Polar models, with narrower LoA, stronger ICC and smaller ES for both the RR intervals and HRV parameters. The findings support the validity of the Polar V800 and its ability to produce RR interval recordings consistent with an ECG. In addition, HRV parameters derived from these recordings are also highly comparable
Optical Spectra of SNR Candidates in NGC 300
We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular
objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter
Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting
the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from
optical spectra, we find that of 28 objects previously proposed as SNRs from
optical observations, 22 meet this criterion with six showing [SII]/Ha of less
than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated
with the 28 previously proposed SNRs. Of these four, three (included in the 22
above) meet the criterion. In all, 22 of the 51 nebular objects meet the
[SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains
undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc
Recommended from our members
Open Science principles for accelerating trait-based science across the Tree of Life.
Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges
An interdisciplinary cruise dedicated to understanding ocean eddies upstream of the Prince Edward Islands
A detailed hydrographic and biological survey was carried out in the region of the South-West Indian Ridge during April 2004. Altimetry and hydrographic data have identified this region as an area of high flow variability. Hydrographic data revealed that here the Subantarctic Polar Front (SAF) and Antarctic Polar Front (APF) converge to form a highly intense frontal system. Water masses identified during the survey showed a distinct separation in properties between the northwestern and southeastern corners. In the north-west, water masses were distinctly Subantarctic (>8.5°C, salinity >34.2), suggesting that the SAF lay extremely far to the south. In the southeast corner water masses were typical of the Antarctic zone, showing a distinct subsurface temperature minimum of <2.5°C. Total integrated chl-a concentration during the survey ranged from 4.15 to 22.81 mg chl-a m[superscript (-2)], with the highest concentrations recorded at stations occupied in the frontal region. These data suggest that the region of the South-West Indian Ridge represents not only an area of elevated biological activity but also acts as a strong biogeographic barrier to the spatial distribution of zooplankton
Asteroseismology with the Roman Galactic Bulge Time-Domain Survey
Asteroseismology has transformed stellar astrophysics. Red giant
asteroseismology is a prime example, with oscillation periods and amplitudes
that are readily detectable with time-domain space-based telescopes. These
oscillations can be used to infer masses, ages and radii for large numbers of
stars, providing unique constraints on stellar populations in our galaxy. The
cadence, duration, and spatial resolution of the Roman galactic bulge
time-domain survey (GBTDS) are well-suited for asteroseismology and will probe
an important population not studied by prior missions. We identify photometric
precision as a key requirement for realizing the potential of asteroseismology
with Roman. A precision of 1 mmag per 15-min cadence or better for saturated
stars will enable detections of the populous red clump star population in the
Galactic bulge. If the survey efficiency is better than expected, we argue for
repeat observations of the same fields to improve photometric precision, or
covering additional fields to expand the stellar population reach if the
photometric precision for saturated stars is better than 1 mmag.
Asteroseismology is relatively insensitive to the timing of the observations
during the mission, and the prime red clump targets can be observed in a single
70 day campaign in any given field. Complementary stellar characterization,
particularly astrometry tied to the Gaia system, will also dramatically expand
the diagnostic power of asteroseismology. We also highlight synergies to Roman
GBTDS exoplanet science using transits and microlensing.Comment: Roman Core Community Survey White Paper, 3 pages, 4 figure
Temporal Artery versus Bladder Thermometry during Adult Medical-Surgical Intensive Care Monitoring: An Observational Study
Abstract
Background
We sought to evaluate agreement between a new and widely implemented method of temperature measurement in critical care, temporal artery thermometry and an established method of core temperature measurement, bladder thermometry as performed in clinical practice.
Methods
Temperatures were simultaneously recorded hourly (n = 736 observations) using both devices as part of routine clinical monitoring in 14 critically ill adult patients with temperatures ranging ≥1°C prior to consent.
Results
The mean difference between temporal artery and bladder temperatures measured was -0.44°C (95% confidence interval, -0.47°C to -0.41°C), with temporal artery readings lower than bladder temperatures. Agreement between the two devices was greatest for normothermia (36.0°C to < 38.3°C) (mean difference -0.35°C [95% confidence interval, -0.37°C to -0.33°C]). The temporal artery thermometer recorded higher temperatures during hypothermia (< 36°C) (mean difference 0.66°C [95% confidence interval, 0.53°C to 0.79°C]) and lower temperatures during hyperthermia (≥38.3°C) (mean difference -0.90°C [95% confidence interval, -0.99°C to -0.81°C]). The sensitivity for detecting fever (core temperature ≥38.3°C) using the temporal artery thermometer was 0.26 (95% confidence interval, 0.20 to 0.33), and the specificity was 0.99 (95% confidence interval, 0.98 to 0.99). The positive likelihood ratio for fever was 24.6 (95% confidence interval, 10.7 to 56.8); the negative likelihood ratio was 0.75 (95% confidence interval, 0.68 to 0.82).
Conclusions
Temporal artery thermometry produces somewhat surprising disagreement with an established method of core temperature measurement and should not to be used in situations where body temperature needs to be measured with accuracy
Asteroseismology with the Roman Galactic Bulge Time-Domain Survey
Asteroseismology has transformed stellar astrophysics. Red giant asteroseismology is a prime example, with oscillation periods and amplitudes that are readily detectable with time-domain space-based telescopes. These oscillations can be used to infer masses, ages and radii for large numbers of stars, providing unique constraints on stellar populations in our galaxy. The cadence, duration, and spatial resolution of the Roman galactic bulge time-domain survey (GBTDS) are well-suited for asteroseismology and will probe an important population not studied by prior missions. We identify photometric precision as a key requirement for realizing the potential of asteroseismology with Roman. A precision of 1 mmag per 15-min cadence or better for saturated stars will enable detections of the populous red clump star population in the Galactic bulge. If the survey efficiency is better than expected, we argue for repeat observations of the same fields to improve photometric precision, or covering additional fields to expand the stellar population reach if the photometric precision for saturated stars is better than 1 mmag. Asteroseismology is relatively insensitive to the timing of the observations during the mission, and the prime red clump targets can be observed in a single 70 day campaign in any given field. Complementary stellar characterization, particularly astrometry tied to the Gaia system, will also dramatically expand the diagnostic power of asteroseismology. We also highlight synergies to Roman GBTDS exoplanet science using transits and microlensing
The NASA Roadmap to Ocean Worlds
In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find. The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists
- …