51 research outputs found
Blending Geospatial Technology and Traditional Ecological Knowledge to Enhance Restoration Decision-Support Processes in Coastal Louisiana
More informed coastal restoration decisions have become increasingly important given limited resources available for restoration projects and the increasing magnitude of marsh degradation and loss across the Gulf Coast. This research investigated the feasibility and benefits of integrating geospatial technology with the traditional ecological knowledge (TEK) of an indigenous Louisiana coastal population to assess the impacts of current and historical ecosystem change on community viability. The primary goal was to provide coastal resource managers with a decision-support tool that allows for a more comprehensive method of assessing localized ecological change in the Gulf Coast region, which can also benefit human community sustainability. Using remote sensing (RS) and geographic information systems (GIS) mapping products, integrated with a coastal communityâs TEK to achieve this goal, the research team determined a method for producing vulnerability/sustainability mapping products for an ecosystem-dependent livelihood base of a coastal population based on information derived from RS imagery prioritized with TEK. This study also demonstrates how such an approach can engage affected community residents who are interested in determining and addressing the causes and mitigating the decline of marsh habitat.
Historical image data sets of the study area were acquired to understand evolution of land change to current conditions and project future vulnerability. Image-processing procedures were developed and applied to produce maps that detail land change in the study area at time intervals from 1968 to 2009. This information was combined in a GIS with acquired TEK and scientific data sets relating to marsh vegetation health and vulnerability characteristics to produce mapping products that provide new information for use in the coastal restoration decision-making process. This information includes: (1) marsh areas that are most vulnerable; and (2) the areas that are most significant to community sustainability
High-Resolution Spectral Sleep Analysis Reveals a Novel Association Between Slow Oscillations and Memory Retention in Elderly Adults
Objective: In recognition of the mixed associations between traditionally scored slow wave sleep and memory, we sought to explore the relationships between slow wave sleep, electroencephalographic (EEG) power spectra during sleep and overnight verbal memory retention in older adults.
Design, Setting, Participants, and Measurements: Participants were 101 adults without dementia (52% female, mean age 70.3 years). Delayed verbal memory was first tested in the evening prior to overnight polysomnography (PSG). The following morning, subjects were asked to recall as many items as possible from the same List (overnight memory retention; OMR). Partial correlation analyses examined the associations of delayed verbal memory and OMR with slow wave sleep (SWS) and two physiologic EEG slow wave activity (SWA) power spectral bands (0.5â1 Hz slow oscillations vs. 1â4 Hz delta activity).
Results: In subjects displaying SWS, SWS was associated with enhanced delayed verbal memory, but not with OMR. Interestingly, among participants that did not show SWS, OMR was significantly associated with a higher slow oscillation relative power, during NREM sleep in the first ultradian cycle, with medium effect size.
Conclusions: These findings suggest a complex relationship between SWS and memory and illustrate that even in the absence of scorable SWS, older adults demonstrate substantial slow wave activity. Further, these slow oscillations (0.5â1 Hz), in the first ultradian cycle, are positively associated with OMR, but only in those without SWS. Our findings raise the possibility that precise features of slow wave activity play key roles in maintaining memory function in healthy aging. Further, our results underscore that conventional methods of sleep evaluation may not be sufficiently sensitive to detect associations between SWA and memory in older adults
Arousal State-Dependent Alterations in VTA-GABAergic Neuronal Activity.
Decades of research have implicated the ventral tegmental area (VTA) in motivation, learning and reward processing. We and others recently demonstrated that it also serves as an important node in sleep/wake regulation. Specifically, VTA-dopaminergic neuron activation is sufficient to drive wakefulness and necessary for the maintenance of wakefulness. However, the role of VTA-GABAergic neurons in arousal regulation is not fully understood. It is still unclear whether VTA-GABAergic neurons predictably alter their activity across arousal states, what is the nature of interactions between VTA-GABAergic activity and cortical oscillations, and how activity in VTA-GABAergic neurons relates to VTA-dopaminergic neurons in the context of sleep/wake regulation. To address these, we simultaneously recorded population activity from VTA subpopulations and electroencephalography/electromyography (EEG/EMG) signals during spontaneous sleep/wake states and in the presence of salient stimuli in freely-behaving mice. We found that VTA-GABAergic neurons exhibit robust arousal-state-dependent alterations in population activity, with high activity and transients during wakefulness and REM sleep. During wakefulness, population activity of VTA-GABAergic neurons, but not VTA-dopaminergic neurons, was positively correlated with EEG Îł power and negatively correlated with Ξ power. During NREM sleep, population activity in both VTA-GABAergic and VTA-dopaminergic neurons negatively correlated with ÎŽ, Ξ, and Ï power bands. Salient stimuli, with both positive and negative valence, activated VTA-GABAergic neurons. Together, our data indicate that VTA-GABAergic neurons, like their dopaminergic counterparts, drastically alter their activity across sleep-wake states. Changes in their activity predicts cortical oscillatory patterns reflected in the EEG, which are distinct from EEG spectra associated with dopaminergic neural activity
Urocortins: CRF's siblings and their potential role in anxiety, depression and alcohol drinking behavior
It is widely accepted that stress, anxiety, depression and alcohol abuse-related disorders are in large part controlled by corticotropin-releasing factor (CRF) receptors. However, evidence is accumulating that some of the actions on these receptors are mediated not by CRF, but by a family of related Urocortin (Ucn) peptides Ucn1, Ucn2 and Ucn3. The initial narrow focus on CRF as the potential main player acting on CRF receptors appears outdated. Instead it is suggested that CRF and the individual Ucns act in a complementary and brain region-specific fashion to regulate anxiety-related behaviors and alcohol consumption. This review, based on a symposium held in 2011 at the research meeting on âAlcoholism and Stressâ in Volterra, Italy, highlights recent evidence for regulation of these behaviors by Ucns. In studies on stress and anxiety, the roles of Ucns, and in particular Ucn1, appear more visible in experiments analyzing adaptation to stressors rather than testing basal anxiety states. Based on these studies, we propose that the contribution of Ucn1 to regulating mood follows a U-like pattern with both high and low activity of Ucn1 contributing to high anxiety states. In studies on alcohol use disorders, the CRF system appears to regulate not only dependence-induced drinking, but also binge drinking and even basal consumption of alcohol. While dependence-induced and binge drinking rely on the actions of CRF on CRFR1 receptors, alcohol consumption in models of these behaviors is inhibited by actions of Ucns on CRFR2. In contrast, alcohol preference is positively influenced by actions of Ucn1, which is capable of acting on both CRFR1 and CRFR2. Because of complex distribution of Ucns in the nervous system, advances in this field will critically depend on development of new tools allowing site-specific analyses of the roles of Ucns and CRF
JADES: Insights into the low-mass end of the massâmetallicityâSFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopyâ
© 2024 The Author(s). Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We analysed the gas-phase metallicity properties of a sample of low-stellar-mass (log Mâ/MâââČâ9) galaxies at 3ââ6, with galaxies significantly less enriched than predicted given their Mâ and SFR (with a median offset in log(O/H) of âŒ0.5 dex, significant at âŒ5Ï). These observations are consistent with an enhanced stochasticity in the gas accretion and star-formation history of high-redshift systems, prompting us to reconsider the nature of the relationship between Mâ, O/H, and SFR in the early Universe.Peer reviewe
Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference
Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward
Spectroscopic confirmation of two luminous galaxies at a redshift of 14
© 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The first observations of the James Webb Space Telescope (JWST) have revolutionized our understanding of the Universe by identifying galaxies at redshift z â 13 (refs. 1â3). In addition, the discovery of many luminous galaxies at Cosmic Dawn (z > 10) has suggested that galaxies developed rapidly, in apparent tension with many standard models4â8. However, most of these galaxies lack spectroscopic confirmation, so their distances and properties are uncertain. Here we present JWST Advanced Deep Extragalactic SurveyâNear-Infrared Spectrograph spectroscopic confirmation of two luminous galaxies at z=14.32â0.20+0.08 and z = 13.90 ± 0.17. The spectra reveal ultraviolet continua with prominent Lyman-α breaks but no detected emission lines. This discovery proves that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST. The most distant of the two galaxies is unexpectedly luminous and is spatially resolved with a radius of 260 parsecs. Considering also the very steep ultraviolet slope of the second galaxy, we conclude that both are dominated by stellar continuum emission, showing that the excess of luminous galaxies in the early Universe cannot be entirely explained by accretion onto black holes. Galaxy formation models will need to address the existence of such large and luminous galaxies so early in cosmic history.Peer reviewe
JADES NIRSpec Spectroscopy of GN-z11: Lyman- emission and possible enhanced nitrogen abundance in a luminous galaxy
We present JADES JWST/NIRSpec spectroscopy of GN-z11, the most luminous
candidate Lyman break galaxy in the GOODS-North field with
. We derive a redshift of (lower than previous
determinations) based on multiple emission lines in our low and medium
resolution spectra over m. We significantly detect the continuum
and measure a blue rest-UV spectral slope of . Remarkably, we see
spatially-extended Lyman- in emission (despite the highly-neutral IGM
expected at this early epoch), offset 555 km/s redward of the systemic
redshift. From our measurements of collisionally-excited lines of both low- and
high-ionization (including [O II] , [Ne III] and C
III] ) we infer a high ionization parameter (). We
detect the rarely-seen N IV] and N III] lines in
both our low and medium resolution spectra, with other high ionization lines
seen in low resolution spectrum such as He II (blended with O III]) and C IV
(with a possible P-Cygni profile). Based on the observed rest-UV line ratios,
we cannot conclusively rule out photoionization from AGN. The high C III]/He II
ratios, however, suggest a likely star-formation explanation. If the observed
emission lines are powered by star formation, then the strong N III]
observed may imply an unusually high abundance. Balmer
emission lines (H, H) are also detected, and if powered by star
formation rather than an AGN we infer a star formation rate of (depending on the IMF) and low dust attenuation. Our
NIRSpec spectroscopy confirms that GN-z11 is a remarkable galaxy with extreme
properties seen 430 Myr after the Big Bang.Comment: Submitted to Astronomy & Astrophysics, 14 pages, 9 figure
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
- âŠ