11 research outputs found
Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons
Background: Alterations in neurotransmitter phenotypes of specific neurons can cause imbalances in excitation and inhibition in the central nervous system (CNS), leading to diseases. Therefore, the correct specification and maintenance of neurotransmitter phenotypes is vital. As with other neuronal properties, neurotransmitter phenotypes are often specified and maintained by particular transcription factors. However, the specific molecular mechanisms and transcription factors that regulate neurotransmitter phenotypes remain largely unknown.
Methods: In this paper we use single mutant, double mutant and transgenic zebrafish embryos to elucidate the functions of Lmx1ba and Lmx1bb in the regulation of spinal cord interneuron neurotransmitter phenotypes.
Results: We demonstrate that lmx1ba and lmx1bb are both expressed in zebrafish spinal cord and that lmx1bb is expressed by both V0v cells and dI5 cells. Our functional analyses demonstrate that these transcription factors are not required for neurotransmitter fate specification at early stages of development, but that in embryos with at least two lmx1ba and/or lmx1bb mutant alleles there is a reduced number of excitatory (glutamatergic) spinal interneurons at later stages of development. In contrast, there is no change in the numbers of V0v or dI5 cells. These data suggest that lmx1b-expressing spinal neurons still form normally, but at least a subset of them lose, or do not form, their normal excitatory fates. As the reduction in glutamatergic cells is only seen at later stages of development, Lmx1b is probably required either for the maintenance of glutamatergic fates or to specify glutamatergic phenotypes of a subset of later forming neurons. Using double labeling experiments, we also show that at least some of the cells that lose their normal glutamatergic phenotype are V0v cells. Finally, we also establish that Evx1 and Evx2, two transcription factors that are required for V0v cells to acquire their excitatory neurotransmitter phenotype, are also required for lmx1ba and lmx1bb expression in these cells, suggesting that Lmx1ba and Lmx1bb act downstream of Evx1 and Evx2 in V0v cells.
Conclusions: Lmx1ba and Lmx1bb function at least partially redundantly in the spinal cord and three functional lmx1b alleles are required in zebrafish for correct numbers of excitatory spinal interneurons at later developmental stages. Taken together, our data significantly enhance our understanding of how spinal cord neurotransmitter fates are regulated
Organocatalytic, Dioxirane-Mediated C–H Hydroxylation under Mild Conditions Using Oxone
Dioxiranes are among
the most selective and useful reagents for
CÂ(sp<sup>3</sup>)–H hydroxylation, but the development of a
general dioxirane-mediated catalytic method has been an elusive goal.
A trifluoromethyl ketone catalyst in combination with Oxone is shown
to enable the first dioxirane-mediated catalytic hydroxylations that
approximate the reactivity and selectivity of isolated dioxiranes.
The mild reaction conditions allow for selective 3° hydroxylation
and 2° oxidation and are tolerant of acid-sensitive functionality
and electron-neutral arenes
An Iminium Salt Organocatalyst for Selective Aliphatic C–H Hydroxylation
The
first examples of catalysis of aliphatic C–H hydroxylation
by an iminium salt are presented. The method allows the selective
organocatalytic hydroxylation of unactivated 3° C–H bonds
at room temperature using hydrogen peroxide as the terminal oxidant.
Hydroxylation of an unactivated 2° C–H bond is also demonstrated.
Furthermore, improved functional group compatibility over other catalytic
methods is reported in the form of selectivity for aliphatic C–H
hydroxylation over alcohol oxidation. On the basis of initial mechanistic
studies, an oxaziridinium species is proposed as the active oxidant
Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons
Background: Alterations in neurotransmitter phenotypes of specific neurons can cause imbalances in excitation and inhibition in the central nervous system (CNS), leading to diseases. Therefore, the correct specification and maintenance of neurotransmitter phenotypes is vital. As with other neuronal properties, neurotransmitter phenotypes are often specified and maintained by particular transcription factors. However, the specific molecular mechanisms and transcription factors that regulate neurotransmitter phenotypes remain largely unknown.
Methods: In this paper we use single mutant, double mutant and transgenic zebrafish embryos to elucidate the functions of Lmx1ba and Lmx1bb in the regulation of spinal cord interneuron neurotransmitter phenotypes.
Results: We demonstrate that lmx1ba and lmx1bb are both expressed in zebrafish spinal cord and that lmx1bb is expressed by both V0v cells and dI5 cells. Our functional analyses demonstrate that these transcription factors are not required for neurotransmitter fate specification at early stages of development, but that in embryos with at least two lmx1ba and/or lmx1bb mutant alleles there is a reduced number of excitatory (glutamatergic) spinal interneurons at later stages of development. In contrast, there is no change in the numbers of V0v or dI5 cells. These data suggest that lmx1b-expressing spinal neurons still form normally, but at least a subset of them lose, or do not form, their normal excitatory fates. As the reduction in glutamatergic cells is only seen at later stages of development, Lmx1b is probably required either for the maintenance of glutamatergic fates or to specify glutamatergic phenotypes of a subset of later forming neurons. Using double labeling experiments, we also show that at least some of the cells that lose their normal glutamatergic phenotype are V0v cells. Finally, we also establish that Evx1 and Evx2, two transcription factors that are required for V0v cells to acquire their excitatory neurotransmitter phenotype, are also required for lmx1ba and lmx1bb expression in these cells, suggesting that Lmx1ba and Lmx1bb act downstream of Evx1 and Evx2 in V0v cells.
Conclusions: Lmx1ba and Lmx1bb function at least partially redundantly in the spinal cord and three functional lmx1b alleles are required in zebrafish for correct numbers of excitatory spinal interneurons at later developmental stages. Taken together, our data significantly enhance our understanding of how spinal cord neurotransmitter fates are regulated
Additional file 1: of Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism
Supplementary Data. (PDF 2.67 mb
Recommended from our members
Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells.
Acknowledgements: We thank the Zebrafish Information Network for providing information on nomenclature and other essential zebrafish resources, and Henry Putz, Jessica Bouchard, Paul Campbell, Leslie Vogt, Annika Swanson, and several Syracuse University undergraduate fish husbandry workers for help with maintaining zebrafish lines. We thank Roda Ntiranyibagira for help with uncx4.1 in situ hybridization in WT embryos and genotyping of evx1;evx2 mutant embryos with uncx4.1 in situ staining. We also thank Lisa Phelps for technical assistance with FACS, Sungmin Baek and Tatjana Piotrowski for advice on methanol fixation for single-cell experiments, Karen Gentile for RNA-seq library preparation, Frank Middleton for advice on Partek Flow, Elisabeth Busch-Nentwich and Ian Sealy for advice on bulk RNA-seq experimental design, Yasir Ahmed-Braimah for advice on scRNA-seq statistical analyses, and Francesca Pignoni for kindly providing lab space and equipment for experimental steps that needed to occur close to the sequencing facility.BACKGROUND: V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. METHODS: To identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. RESULTS: Our data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48Â h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. CONCLUSIONS: This study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type