1,353 research outputs found

    Topical decolonization does not eradicate the skin microbiota of community-dwelling or hospitalized adults

    Get PDF
    Topical antimicrobials are often employed for decolonization and infection prevention and may alter the endogenous microbiota of the skin. The objective of this study was to compare the microbial communities and levels of richness and diversity in community-dwelling subjects and intensive care unit (ICU) patients before and after the use of topical decolonization protocols. We enrolled 15 adults at risk for Staphylococcus aureus infection. Community subjects (n = 8) underwent a 5-day decolonization protocol (twice daily intranasal mupirocin and daily dilute bleach-water baths), and ICU patients (n = 7) received daily chlorhexidine baths. Swab samples were collected from 5 anatomic sites immediately before and again after decolonization. A variety of culture media and incubation environments were used to recover bacteria and fungi; isolates were identified using matrix-assisted laser desorption ionization–time of flight mass spectrometry. Overall, 174 unique organisms were recovered. Unique communities of organisms were recovered from the community-dwelling and hospitalized cohorts. In the community-dwelling cohort, microbial richness and diversity did not differ significantly between collections across time points, although the number of body sites colonized with S. aureus decreased significantly over time (P = 0.004). Within the hospitalized cohort, richness and diversity decreased over time compared to those for the enrollment sampling (from enrollment to final sampling, P = 0.01 for both richness and diversity). Topical antimicrobials reduced the burden of S. aureus while preserving other components of the skin and nasal microbiota

    Automation and robotics considerations for a lunar base

    Get PDF
    An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment

    Cyberbiosecurity: An Emerging New Discipline to Help Safeguard the Bioeconomy

    Get PDF
    Cyberbiosecurity is being proposed as a formal new enterprise which encompasses cybersecurity, cyber-physical security and biosecurity as applied to biological and biomedical-based systems. In recent years, an array of important meetings and public discussions, commentaries and publications have occurred that highlight numerous vulnerabilities. While necessary first steps, they do not provide a systematized structure for effectively promoting communication, education and training, elucidation and prioritization for analysis, research, development, test and evaluation and implementation of scientific, technological, standards of practice, policy, or even regulatory or legal considerations for protecting the bioeconomy. Further, experts in biosecurity and cybersecurity are generally not aware of each other’s domains, expertise, perspectives, priorities, or where mutually supported opportunities exist for which positive outcomes could result. Creating, promoting and advancing a new discipline can assist with formal, beneficial and continuing engagements. Recent key activities and publications that inform the creation of Cyberbiosecurity are briefly reviewed, as is the expansion of Cyberbiosecurity to include biomanufacturing which is supported by a rigorous analysis of a biomanufacturing facility. Recommendations are provided to initialize Cyberbiosecurity and place it on a trajectory to establish a structured and sustainable discipline, forum and enterprise

    Beef production from feedstuffs conserved using new technologies to reduce negative environmental impacts

    Get PDF
    End of project reportMost (ca. 86%) Irish farms make some silage. Besides directly providing feed for livestock, the provision of grass silage within integrated grassland systems makes an important positive contribution to effective grazing management and improved forage utilisation by grazing animals, and to effective feed budgeting by farmers. It can also contribute to maintaining the content of desirable species in pastures, and to livestock not succumbing to parasites at sensitive times of the year. Furthermore, the optimal recycling of nutrients collected from housed livestock can often be best achieved by spreading the manures on the land used for producing the conserved feed. On most Irish farms, grass silage will remain the main conserved forage for feeding to livestock during winter for the foreseeable future. However, on some farms high yields of whole-crop (i.e. grain + straw) cereals such as wheat, barley and triticale, and of forage maize, will be an alternative option provided that losses during harvesting, storage and feedout are minimised and that input costs are restrained. These alternative forages have the potential to reliably support high levels of animal performance while avoiding the production of effluent. Their production and use however will need to advantageously integrate into ruminant production systems. A range of technologies can be employed for crop production and conservation, and for beef production, and the optimal options need to be identified. Beef cattle being finished indoors are offered concentrate feedstuffs at rates that range from modest inputs through to ad libitum access. Such concentrates frequently contain high levels of cereals such as barley or wheat. These cereals are generally between 14% to 18% moisture content and tend to be rolled shortly before being included in coarse rations or are more finely processed prior to pelleting. Farmers thinking of using ‘high-moisture grain’ techniques for preserving and processing cereal grains destined for feeding to beef cattle need to know how the yield, conservation efficiency and feeding value of such grains compares with grains conserved using more conventional techniques. European Union policy strongly encourages a sustainable and multifunctional agriculture. Therefore, in addition to providing European consumers with quality food produced within approved systems, agriculture must also contribute positively to the conservation of natural resources and the upkeep of the rural landscape. Plastics are widely used in agriculture and their post-use fate on farms must not harm the environment - they must be managed to support the enduring sustainability of farming systems. There is an absence of information on the efficacy of some new options for covering and sealing silage with plastic sheeting and tyres, and an absence of an inventory of the use, re-use and post-use fate of plastic film on farms. Irish cattle farmers operate a large number of beef production systems, half of which use dairy bred calves. In the current, continuously changing production and market conditions, new beef systems must be considered. A computer package is required that will allow the rapid, repeatable simulation and assessment of alternate beef production systems using appropriate, standardised procedures. There is thus a need to construct, evaluate and utilise computer models of components of beef production systems and to develop mathematical relationships to link system components into a network that would support their integration into an optimal system model. This will provide a framework to integrate physical and financial on-farm conditions with models for estimating feed supply and animal growth patterns. Cash flow and profit/loss results will be developed. This will help identify optimal systems, indicate the cause of failure of imperfect systems and identify areas where applied research data are currently lacking, or more basic research is required

    Pre- and Post Impoundment Ichthyoparasite Succession in a New Arkansas Reservoir

    Get PDF
    Helminth and crustacean parasites from 2,387 Micropterus dolomieui, M. punctulatus, and M. salmoides were utilized to monitor annual pre- and postimpoundment succession patterns spanning eight con- tinuous years in Beaver Reservoir, Arkansas. Incidence of infection by ichthyoparasites with direct life cycles (monogenetic trematodes, leeches, and crustaceans) generally increased following impoundment, although leeches remained relatively constant. Exceptions to this general pattern occurred. Incidence of ichthyoparasites with indirect life cycles (digenetic trematodes, cestodes, acanthocephalans, and nematodes) decreased immediately following impoundment with subsequent increases to a point equal or above that of preimpoundment, although exceptions occurred. Time for species adaptation to the reservoir environment varied, with some species disappearing and others occurring for the first time. Diversity indices indicated that a moderate parasite community was maintained in the White River two years prior to its impoundment to form Beaver Reservoir. During the first impoundment year the parasite community declined to the lowest postimpoundment level with the abrupt change in habitat. Throughout the following four post- impoundment years the parasite community gradually increased to become much larger and more complex than it was during preimpoundment. Parasite community succession stabilization occurred in the fifth postimpoundment year and continued the following year indicating the establishment of a climax ichthyoparasite community

    MicroMAPS CO Measurements over North America and Europe during Summer-Fall 2004

    Get PDF
    The MicroMAPS instrument is a nadir-viewing, gas filter-correlated radiometer which operating in the 4.67 micrometer fundamental band of carbon monoxide. Originally designed and built for a space mission, this CO remote sensor is being flown in support of satellite validation and science instrument demonstrations for potential UAV applications. The MicroMAPS instrument system, as flown on Proteus, was designed by a senior student design project in the Aerospace Engineering Department, Virginia Tech, in Blacksburg, VA. and then revised by Systems Engineers at NASA Langley. The final instrument system was integrated and tested at NASA LaRC, in partnership with Scaled Composites and Virginia Space Grant Consortium (VSGC). VSGC supervised the fabrication of the nacelle that houses the instrument system on the right rear tail boom of Proteus. Full system integration and flight testing was performed at Scaled Composites, in Mojave, in June 2004. Its successful performance enabled participation in four international science missions on Proteus: in 2004, INTEX -NA over eastern North America in July, ADRIEX over the Mediterranean region and EAQUATE over the United Kingdom region in September,and TWP-ICE over Darwin, Australia and the surrounding oceans in Jan-Feb 2006. These flights resulted in nearly 300 hours of data. In parallel with the engineering developments, theoretical radiative transfer models were developed specifically for the MicroMAPS instrument system at the University of Virginia, Mechanical Engineering Department by a combined undergraduate and graduate student team. With technical support from Resonance Ltd. in June 2005, the MicroMAPS instrument was calibrated for the conditions under which the Summer-Fall 2004 flights occurred. The analyses of the calibration data, combined with the theoretical radiative transfer models, provide the first data reduction for the science flights reported here. These early results and comparisons with profile data from the NASA DC-8, the coincident AIRS CO retrievals, and selected CO measurements from the MOZAIC program will be presented

    Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS-40)

    Get PDF
    Previous studies in the mouse have shown that high levels of alpha-globin gene expression in late erythropoiesis depend on long-range, physical interactions between remote upstream regulatory elements and the globin promoters. Using quantitative chromosome conformation capture (q3C), we have now analyzed all interactions between 4 such elements lying 10 to 50 kb upstream of the human alpha cluster and their interactions with the alpha-globin promoter. All of these elements interact with the alpha-globin gene in an erythroid-specific manner. These results were confirmed in a mouse model of human alpha globin expression in which the human cluster replaces the mouse cluster in situ (humanized mouse). We have also shown that expression and all of the long-range interactions depend largely on just one of these elements; removal of the previously characterized major regulatory element (called HS -40) results in loss of all the interactions and alpha-globin expression. Reinsertion of this element at an ectopic location restores both expression and the intralocus interactions. In contrast to other more complex systems involving multiple upstream elements and promoters, analysis of the human alpha-globin cluster during erythropoiesis provides a simple and tractable model to understand the mechanisms underlying long-range gene regulation
    • …
    corecore