38 research outputs found
Mechanisms of Risk and Resilience in Military Families: Theoretical and Empirical Basis of a Family-Focused Resilience Enhancement Program
Recent studies have confirmed that repeated wartime deployment of a parent exacts a toll on military children and families and that the quality and functionality of familial relations is linked to force preservation and readiness. As a result, family-centered care has increasingly become a priority across the military health system. FOCUS (Families OverComing Under Stress), a family-centered, resilience-enhancing program developed by a team at UCLA and Harvard Schools of Medicine, is a primary initiative in this movement. In a large-scale implementation project initiated by the Bureau of Navy Medicine, FOCUS has been delivered to thousands of Navy, Marine, Navy Special Warfare, Army, and Air Force families since 2008. This article describes the theoretical and empirical foundation and rationale for FOCUS, which is rooted in a broad conception of family resilience. We review the literature on family resilience, noting that an important next step in building a clinically useful theory of family resilience is to move beyond developing broad “shopping lists” of risk indicators by proposing specific mechanisms of risk and resilience. Based on the literature, we propose five primary risk mechanisms for military families and common negative “chain reaction” pathways through which they undermine the resilience of families contending with wartime deployments and parental injury. In addition, we propose specific mechanisms that mobilize and enhance resilience in military families and that comprise central features of the FOCUS Program. We describe these resilience-enhancing mechanisms in detail, followed by a discussion of the ways in which evaluation data from the program’s first 2 years of operation supports the proposed model and the specified mechanisms of action
To which world regions does the valence–dominance model of social perception apply?
Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of
how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social
judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether
these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across
11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy,
the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated
dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance
model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed
when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007);
L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from
CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social
Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing
Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were
supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E.
Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council
of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad
de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant
from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick
and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak
Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported
by a French National Research Agency ‘Investissements d’Avenir’ programme grant
(ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research
Training Program Scholarship. The Raipur Group is thankful to: (1) the University
Grants Commission, New Delhi, India for the research grants received through its
SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science;
and (2) the Center for Translational Chronobiology at the School of Studies in Life
Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by
a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was
supported by grants from the Beijing Natural Science Foundation (5184035) and CAS
Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported
by the National Science Foundation Graduate Research Fellowship (R010138018). We
acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States
International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E.
Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova);
S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of
Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R.
C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New
Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T.
Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera);
J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B.
Todorova (University of Vienna, Austria). The funders had no role in study design, data
collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog
A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.
The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world
Chronic hypoxemia induces mitochondrial respiratory complex gene expression in the fetal sheep brain
OBJECTIVE: The molecular pathways underlying hypoxemia-induced alterations in neurodevelopment of infants with congenital heart disease have not been delineated. We used transcriptome analysis to investigate differential gene expression induced by hypoxemia in an ovine artificial-womb model. METHODS: Mid-gestation fetal sheep (median [interquartile range] 109 [107-112] days' gestation) were cannulated via the umbilical vessels, attached to a pumpless, low-resistance oxygenator circuit, and incubated in a sterile, fluid environment for 22 [21-23] days. Fetuses were maintained with an oxygen delivery of 20-25 mL/kg/min (normoxemia, n = 3) or 14-16 mL/kg/min (hypoxemia, n = 4). Transcriptional profiling by RNA sequencing was carried out on left frontal brains and hypoxemia-regulated genes were identified by differential gene expression analysis. RESULTS: A total of 228 genes whose expression was up or down regulated by ≥1.5-fold (false discovery rate ≤0.05) were identified. The majority of these genes were induced in hypoxemic animals compared to normoxemic controls, and functional enrichment analysis identified respiratory electron transport as a pathway strongly upregulated in the brain during chronic hypoxemia. Further examination of hypoxemia-induced genes showed robust induction of all 7 subunits of the mitochondrial NADH:ubiquinone oxidoreductase (complex I). Other hypoxemia-induced genes included cytochrome B, a component of complex III, and ATP6, ATP8, both of which are components of complex V. CONCLUSIONS: Chronic fetal hypoxemia leads to upregulation of multiple mitochondrial respiratory complex genes critical for energy production and reactive oxygen species generation, including complex I. These data provide valuable insight into potential pathways involved in chronic hypoxemia-induced neuropathology and offers potential therapeutic targets for fetal neuroprotection in fetuses with congenital heart defects