135 research outputs found

    Broad-Time-Horizon Solar Power Prediction and PV Performance Degradation Research at the University of Arizona

    Get PDF
    An overview of University of Arizona cooperative research efforts towards enhanced solar power prediction over PV system operational lifetime is provided. Integration of established research programs in power forecasting (including irradiance and irradiance-to-power modeling) and in device and system-level performance degradation studies offer new opportunities to address solar power prediction needs over short and long-term time horizons.University of Arizona Institute for Energy Solutions; Tucson Electric Power; Arizona Public Service; Public Service Company of New MexicoThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Optimal interpolation of satellite and ground data for irradiance nowcasting at city scales

    Get PDF
    We use a Bayesian method, optimal interpolation, to improve satellite derived irradiance estimates at city-scales using ground sensor data. Optimal interpolation requires error covariances in the satellite estimates and ground data, which define how information from the sensor locations is distributed across a large area. We describe three methods to choose such covariances, including a covariance parameterization that depends on the relative cloudiness between locations. Results are computed with ground data from 22 sensors over a 75Ă—80 km area centered on Tucson, AZ, using two satellite derived irradiance models. The improvements in standard error metrics for both satellite models indicate that our approach is applicable to additional satellite derived irradiance models. We also show that optimal interpolation can nearly eliminate mean bias error and improve the root mean squared error by 50%

    pvlib iotools—Open-source Python functions for seamless access to solar irradiance data

    Get PDF
    Access to accurate solar resource data is critical for numerous applications, including estimating the yield of solar energy systems, developing radiation models, and validating irradiance datasets. However, lack of standardization in data formats and access interfaces across providers constitutes a major barrier to entry for new users. pvlib python's iotools subpackage aims to solve this issue by providing standardized Python functions for reading local files and retrieving data from external providers. All functions follow a uniform pattern and return convenient data outputs, allowing users to seamlessly switch between data providers and explore alternative datasets. The pvlib package is community-developed on GitHub: https://github.com/pvlib/pvlib-python. As of pvlib python version 0.9.5, the iotools subpackage supports 12 different datasets, including ground measurement, reanalysis, and satellite-derived irradiance data. The supported ground measurement networks include the Baseline Surface Radiation Network (BSRN), NREL MIDC, SRML, SOLRAD, SURFRAD, and the US Climate Reference Network (CRN). Additionally, satellite-derived and reanalysis irradiance data from the following sources are supported: PVGIS (SARAH &amp; ERA5), NSRDB PSM3, and CAMS Radiation Service (including McClear clear-sky irradiance).</p

    pvlib iotools—Open-source Python functions for seamless access to solar irradiance data

    Get PDF
    Access to accurate solar resource data is critical for numerous applications, including estimating the yield of solar energy systems, developing radiation models, and validating irradiance datasets. However, lack of standardization in data formats and access interfaces across providers constitutes a major barrier to entry for new users. pvlib python's iotools subpackage aims to solve this issue by providing standardized Python functions for reading local files and retrieving data from external providers. All functions follow a uniform pattern and return convenient data outputs, allowing users to seamlessly switch between data providers and explore alternative datasets. The pvlib package is community-developed on GitHub: https://github.com/pvlib/pvlib-python. As of pvlib python version 0.9.5, the iotools subpackage supports 12 different datasets, including ground measurement, reanalysis, and satellite-derived irradiance data. The supported ground measurement networks include the Baseline Surface Radiation Network (BSRN), NREL MIDC, SRML, SOLRAD, SURFRAD, and the US Climate Reference Network (CRN). Additionally, satellite-derived and reanalysis irradiance data from the following sources are supported: PVGIS (SARAH &amp; ERA5), NSRDB PSM3, and CAMS Radiation Service (including McClear clear-sky irradiance).</p
    • …
    corecore