61 research outputs found
Assessing the commutability of candidate reference materials for the harmonization of neurofilament light measurements in blood
OBJECTIVES: Neurofilament light chain (NfL) concentration in blood is a biomarker of neuro-axonal injury in the nervous system and there now exist several assays with high enough sensitivity to measure NfL in serum and plasma. There is a need for harmonization with the goal of creating a certified reference material (CRM) for NfL and an early step in such an effort is to determine the best matrix for the CRM. This is done in a commutability study and here the results of the first one for NfL in blood is presented. METHODS: Forty paired individual serum and plasma samples were analyzed for NfL on four different analytical platforms. Neat and differently spiked serum and plasma were evaluated for their suitability as a CRM using the difference in bias approach. RESULTS: The correlation between the different platforms with regards to measured NfL concentrations were very high (Spearman's ρ≥0.96). Samples spiked with cerebrospinal fluid (CSF) showed higher commutability compared to samples spiked with recombinant human NfL protein and serum seems to be a better choice than plasma as the matrix for a CRM. CONCLUSIONS: The results from this first commutability study on NfL in serum/plasma showed that it is feasible to create a CRM for NfL in blood and that spiking should be done using CSF rather than with recombinant human NfL protein
Bioinformatics tools and data resources for assay development of fluid protein biomarkers
Fluid protein biomarkers are important tools in clinical research and health care to support diagnosis and to monitor patients. Especially within the field of dementia, novel biomarkers could address the current challenges of providing an early diagnosis and of selecting trial participants. While the great potential of fluid biomarkers is recognized, their implementation in routine clinical use has been slow. One major obstacle is the often unsuccessful translation of biomarker candidates from explorative high-throughput techniques to sensitive antibody-based immunoassays. In this review, we propose the incorporation of bioinformatics into the workflow of novel immunoassay development to overcome this bottleneck and thus facilitate the development of novel biomarkers towards clinical laboratory practice. Due to the rapid progress within the field of bioinformatics many freely available and easy-to-use tools and data resources exist which can aid the researcher at various stages. Current prediction methods and databases can support the selection of suitable biomarker candidates, as well as the choice of appropriate commercial affinity reagents. Additionally, we examine methods that can determine or predict the epitope - an antibody’s binding region on its antigen - and can help to make an informed choice on the immunogenic peptide used for novel antibody production. Selected use cases for biomarker candidates help illustrate the application and interpretation of the introduced tools
Clinical Value of Longitudinal Serum Neurofilament Light Chain in Prodromal Genetic Frontotemporal Dementia
BACKGROUND AND OBJECTIVES: Elevated serum neurofilament light chain (NfL) is used to identify carriers of genetic frontotemporal dementia (FTD) pathogenic variants approaching prodromal conversion. Yet, the magnitude and timeline of NfL increase are still unclear. Here, we investigated the predictive and early diagnostic value of longitudinal serum NfL for the prodromal conversion in genetic FTD. METHODS: In a longitudinal observational cohort study of genetic FTD pathogenic variant carriers, we examined the diagnostic accuracy and conversion risk associated with cross-sectional and longitudinal NfL. Time periods relative to prodromal conversion (>3, 3-1.5, 1.5-0 years before; 0-1.5 years after) were compared with values of participants who did not convert. Next, we modeled longitudinal NfL and MRI volume trajectories to determine their timeline.RESULTS: We included 21 participants who converted (5 chromosome 9 open-reading frame 72 [C9orf72], 10 progranulin [GRN], 5 microtubule-associated protein tau [MAPT], and 1 TAR DNA-binding protein [TARDBP]) and 61 who did not (20 C9orf72, 30 GRN, and 11 MAPT). Participants who converted had higher NfL levels at all examined periods before prodromal conversion (median values 14.0-18.2 pg/mL; betas = 0.4-0.7, standard error [SE] = 0.1, p < 0.046) than those who did not (6.5 pg/mL) and showed further increase 0-1.5 years after conversion (28.4 pg/mL; beta = 1.0, SE = 0.1, p < 0.001). Annualized longitudinal NfL change was only significantly higher in participants who converted (vs. participants who did not) 0-1.5 years after conversion (beta = 1.2, SE = 0.3, p = 0.001). Diagnostic accuracy of cross-sectional NfL for prodromal conversion (vs. nonconversion) was good-to-excellent at time periods before conversion (area under the curve range: 0.72-0.92), improved 0-1.5 years after conversion (0.94-0.97), and outperformed annualized longitudinal change (0.76-0.84). NfL increase in participants who converted occurred earlier than frontotemporal MRI volume change and differed by genetic group and clinical phenotypes. Higher NfL corresponded to increased conversion risk (hazard ratio: cross-sectional = 6.7 [95% CI 3.3-13.7]; longitudinal = 13.0 [95% CI 4.0-42.8]; p < 0.001), but conversion-free follow-up time varied greatly across participants. DISCUSSION: NfL increase discriminates individuals who convert to prodromal FTD from those who do not, preceding significant frontotemporal MRI volume loss. However, NfL alone is limited in predicting the exact timing of prodromal conversion. NfL levels also vary depending on underlying variant-carrying genes and clinical phenotypes. These findings help to guide participant recruitment for clinical trials targeting prodromal genetic FTD.</p
Neurofilament light protein as a biomarker for spinal muscular atrophy:A review and reference ranges
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive neuromuscular degeneration resulting from mutations in the survival motor neuron (SMN1) gene. The availability of disease-modifying therapies for SMA therapies highlights the pressing need for easily accessible and cost-effective blood biomarkers to monitor treatment response and for better disease management. Additionally, the wide implementation of newborn genetic screening programs in Western countries enables presymptomatic diagnosis of SMA and immediate treatment administration. However, the absence of monitoring and prognostic blood biomarkers for neurodegeneration in SMA hinders effective disease management. Neurofilament light protein (NfL) is a promising biomarker of neuroaxonal damage in SMA and reflects disease progression in children with SMA undergoing treatment. Recently, the European Medicines Agency issued a letter of support endorsing the potential utilization of NfL as a biomarker of pediatric neurological diseases, including SMA. Within this review, we comprehensively assess the potential applications of NfL as a monitoring biomarker for disease severity and treatment response in pediatric-onset SMA. We provide reference ranges for normal levels of serum based NfL in neurologically healthy children aged 0-18 years. These reference ranges enable accurate interpretation of NfL levels in children and can accelerate the implementation of NfL into clinical practice.</p
Assessing the Pre-Analytical Stability of Small-Molecule Metabolites in Cerebrospinal Fluid Using Direct-Infusion Metabolomics
Metabolomics studies aiming to find biomarkers frequently make use of historical or multicenter cohorts. These samples often have different pre-analytical conditions that potentially affect metabolite concentrations. We studied the effect of different storage conditions on the stability of small-molecule metabolites in cerebrospinal fluid to aid a reliable interpretation of metabolomics data. Three cerebrospinal fluid pools were prepared from surplus samples from the Amsterdam Dementia Cohort biobank. Aliquoted pools were exposed to different storage conditions to assess the temperature and freeze/thaw stability before final storage at -80 °C: storage up to four months at -20 °C and up to one week at either 5-8 °C or 18-22 °C and exposure to up to seven freeze/thaw cycles. Direct-infusion high-resolution mass spectrometry was performed, resulting in the identification of 1852 m/z peaks. To test the storage stability, principal component analyses, repeated measures analysis of variance, Kruskal‒Wallis tests, and fold change analyses were performed, all demonstrating that small-molecule metabolites in the cerebrospinal fluid (CSF) are relatively unaffected by 1‒3 freeze/thaw cycles, by storage at -20 °C up to two months, by storage at 5-8 °C for up to 72 h, or by storage at 18-22 °C for up to 8 h. This suggests that these differences do not affect the interpretation of potential small-molecule biomarkers in multicenter or historical cohorts and implies that these cohorts are suitable for biomarker studies
Renal Function and Body Mass Index Contribute to Serum Neurofilament Light Chain Levels in Elderly Patients With Atrial Fibrillation.
Objective: Serum neurofilament light chain (sNfL) is increasingly used as a neuroaxonal injury biomarker in the elderly. Besides age, little is known about how other physiological factors like renal function and body mass index (BMI) alter its levels. Here, we investigated the association of estimated glomerular filtration rate (eGFR) and BMI with sNfL in a large sample of elderly patients with atrial fibrillation (AF).
Methods: This is a cross-sectional analysis from the Swiss-AF Cohort (NCT02105844). We measured sNfL using an ultrasensitive single-molecule array assay. We calculated eGFR using the chronic kidney disease epidemiology collaboration (CKD-EPI) creatinine (eGFRcrea) and creatinine–cystatin C (eGFRcrea–cys) formulas, and BMI from weight and height measurements. We evaluated the role of eGFR and BMI as determinants of sNfL levels using multivariable linear regression and the adjusted R2 (R2adj).
Results: Among 2,277 Swiss-AF participants (mean age 73.3 years), eGFRcrea showed an inverse curvilinear association with sNfL after adjustment for age and cardiovascular comorbidities. BMI also showed an independent, inverse linear association with sNfL. The R2adj of models with age, eGFRcrea, and BMI alone was 0.26, 0.35, and 0.02, respectively. A model with age and eGFRcrea combined explained 45% of the sNfL variance. Sensitivity analyses (i) further adjusting for vascular brain lesions (N = 1,402 participants with MRI) and (ii) using eGFRcrea–cys yielded consistent results.
Interpretation: In an elderly AF cohort, both renal function and BMI were associated with sNfL, but only renal function explained a substantial proportion of the sNfL variance. This should be taken into account when using sNfL in elderly patients or patients with cardiovascular disease
Four subgroups based on tau levels in Alzheimer's disease observed in two independent cohorts
BackgroundAs Alzheimer's disease (AD) pathology presents decades before dementia manifests, unbiased biomarker cut-points may more closely reflect presence of pathology than clinically defined cut-points. Currently, unbiased cerebrospinal fluid (CSF) tau cut-points are lacking.MethodsWe investigated CSF t-tau and p-tau cut-points across the clinical spectrum using Gaussian mixture modelling, in two independent cohorts (Amsterdam Dementia Cohort and ADNI).ResultsIndividuals with normal cognition (NC) (total n =1111), mild cognitive impairment (MCI) (total n =1213) and Alzheimer's disease dementia (AD) (total n =1524) were included. In both cohorts, four CSF t- and p-tau distributions and three corresponding cut-points were identified. Increasingly high tau subgroups were characterized by steeper MMSE decline and higher progression risk to AD (cohort/platform-dependent HR, t-tau 1.9-21.3; p-tau 2.2-9.5).LimitationsThe number of subjects in some subgroups and subanalyses was small, especially in the highest tau subgroup and in tau PET analyses.ConclusionsIn two independent cohorts, t-tau and p-tau levels showed four subgroups. Increasingly high tau subgroups were associated with faster clinical decline, suggesting our approach may aid in more precise prognoses
A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
OBJECTIVE: To elaborate a new algorithm to establish a standardized method to define cuff-offs for CSF biomarkers of Alzheimer's disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS: Low and high levels of CSF phosphorylated tau were first identified to establish optimal cut-offs for CSF amyloid-β peptide (Aβ) biomarkers. These Aβ cut-offs were then used to determine cut-offs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. RESULTS: A total of 6,922 subjects with CSF biomarkers data were included (mean (SD) age: 70.6 (8.5) years, 51.0% women). In the ADNI study population (n=497), the agreement between classification based on our algorithm and one based on amyloid/tau PET imaging was high with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n=6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. DISCUSSION: The proposed novel, pragmatic method to determine CSF biomarkers cut-offs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification
Complement Activation Is Associated With Disease Severity in Multiple Sclerosis.
BACKGROUND AND OBJECTIVES
Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression.
METHODS
CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient.
RESULTS
CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001).
DISCUSSION
CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS
- …