36,259 research outputs found
Quantum anomalies and linear response theory
The analysis of diffusive energy spreading in quantized chaotic driven
systems, leads to a universal paradigm for the emergence of a quantum anomaly.
In the classical approximation a driven chaotic system exhibits stochastic-like
diffusion in energy space with a coefficient that is proportional to the
intensity of the driving. In the corresponding quantized problem
the coherent transitions are characterized by a generalized Wigner time
, and a self-generated (intrinsic) dephasing process leads to
non-linear dependence of on .Comment: 8 pages, 2 figures, textual improvements (as in published version
Absorption of Energy at a Metallic Surface due to a Normal Electric Field
The effect of an oscillating electric field normal to a metallic surface may
be described by an effective potential. This induced potential is calculated
using semiclassical variants of the random phase approximation (RPA). Results
are obtained for both ballistic and diffusive electron motion, and for two and
three dimensional systems. The potential induced within the surface causes
absorption of energy. The results are applied to the absorption of radiation by
small metal spheres and discs. They improve upon an earlier treatment which
used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript
Evaluating the transition of e-Government: A review of local authorities in England
The goal of e-Government is seen as a panacea for governmental authorities. The emerging needs of citizens, their inclusion and engagement in policy development, political and participatory processes have meant new perspectives on e-Government are required. This paper seeks to identify and evaluate the preparedness of 10 UK-based local authorities to transition from basic e-Government to a more sophisticated and integrated e-Government. A categorical assessment of e-Government characteristics is made and these authorities are ranked accordingly. Our findings reveal the majority of local authorities sampled had reached a high percentage of informational and transactional e-Government but few had reached the interactional level and none had achieved assimilation. This suggests that local authorities seem to have focused on basic e-Government services. There is a need now to forge ahead to integration and assimilation of e-Government in order to address the critical objectives of citizen inclusion and engagement, and alignment of institutional processes to provide an infrastructure for the transition to e-governance and e-knowledge
Partnership in practice
This paper examines human resource management practices adopted in a group of eight case study firms and their tendencies towards versus away from partnership. The analysis is based on data collected during interviews with 124 employees (75 in organisations tending towards partnership and 49 in organisations tending away from partnership) and senior managers, conducted in 1997-1998 for the Job Insecurity and Work Intensification Survey (JIWIS). Drawing on the perspectives of senior managers and employees, we examine the tendency of firms towards and away from partnership in employment relations; and in keeping with the JIWIS methodology (Burchell et.al., 2001) we combine quantitative and qualitative evidence in our analysis. Specifically, we are interested in what partnership looks like in these different contexts, the reasons it is pursued (or not), the degree to which companies have been successful in achieving their partnership objectives (from the perspective of both management and employees), and the conditions that have either facilitated or impeded partnership in relationships with employees
Effect of prednisolone on inflammatory markers in pericardial tuberculosis: A pilot study
Background: Pericardial disorders are a common cause of heart disease, and the most common cause of pericarditis in developing countries is tuberculous (TB) pericarditis. It has been shown that prednisolone added to standard anti-TB therapy leads to a lower rate of constrictive pericarditis. We conducted a pilot study to evaluate the effect of adjunctive prednisolone treatment on the concentration of inflammatory markers in pericardial tuberculosis, in order to inform immunological mechanisms at the disease site. Methods: Pericardial fluid, plasma and saliva samples were collected from fourteen patients with pericardial tuberculosis, at multiple time points. Inflammatory markers were measured using multiplex luminex analysis and ELISA. Results: In samples from 14 patients we confirmed a strongly compartmentalized immune response at the disease site and found that prednisolone significantly reduced IL-6 concentrations in plasma by 8 hours of treatment, IL-1beta concentrations in saliva, as well as IL-8 concentrations in both pericardial fluid and saliva by 24 hours. Conclusion: Monitoring the early effect of adjunctive immunotherapy in plasma or saliva is a possibility in pericarditis
A Green's function approach to the natural vibration of thin spherical shell segments - A numerical method Final report
Green function approach to natural vibration of thin spherical shell segment
Energy absorption by "sparse" systems: beyond linear response theory
The analysis of the response to driving in the case of weakly chaotic or
weakly interacting systems should go beyond linear response theory. Due to the
"sparsity" of the perturbation matrix, a resistor network picture of
transitions between energy levels is essential. The Kubo formula is modified,
replacing the "algebraic" average over the squared matrix elements by a
"resistor network" average. Consequently the response becomes semi-linear
rather than linear. Some novel results have been obtained in the context of two
prototype problems: the heating rate of particles in Billiards with vibrating
walls; and the Ohmic Joule conductance of mesoscopic rings driven by
electromotive force. Respectively, the obtained results are contrasted with the
"Wall formula" and the "Drude formula".Comment: 8 pages, 7 figures, short pedagogical review. Proceedings of FQMT
conference (Prague, 2011). Ref correcte
The Quantum-Classical Crossover in the Adiabatic Response of Chaotic Systems
The autocorrelation function of the force acting on a slow classical system,
resulting from interaction with a fast quantum system is calculated following
Berry-Robbins and Jarzynski within the leading order correction to the
adiabatic approximation. The time integral of the autocorrelation function is
proportional to the rate of dissipation. The fast quantum system is assumed to
be chaotic in the classical limit for each configuration of the slow system. An
analytic formula is obtained for the finite time integral of the correlation
function, in the framework of random matrix theory (RMT), for a specific
dependence on the adiabatically varying parameter. Extension to a wider class
of RMT models is discussed. For the Gaussian unitary and symplectic ensembles
for long times the time integral of the correlation function vanishes or falls
off as a Gaussian with a characteristic time that is proportional to the
Heisenberg time, depending on the details of the model. The fall off is
inversely proportional to time for the Gaussian orthogonal ensemble. The
correlation function is found to be dominated by the nearest neighbor level
spacings. It was calculated for a variety of nearest neighbor level spacing
distributions, including ones that do not originate from RMT ensembles. The
various approximate formulas obtained are tested numerically in RMT. The
results shed light on the quantum to classical crossover for chaotic systems.
The implications on the possibility to experimentally observe deterministic
friction are discussed.Comment: 26 pages, including 6 figure
Non-equilibrium steady state of sparse systems
A resistor-network picture of transitions is appropriate for the study of
energy absorption by weakly chaotic or weakly interacting driven systems. Such
"sparse" systems reach a novel non-equilibrium steady state (NESS) once coupled
to a bath. In the stochastic case there is an analogy to the physics of
percolating glassy systems, and an extension of the fluctuation-dissipation
phenomenology is proposed. In the mesoscopic case the quantum NESS might differ
enormously from the stochastic NESS, with saturation temperature determined by
the sparsity. A toy model where the sparsity of the system is modeled using a
log-normal random ensemble is analyzed.Comment: 6 pages, 6 figures, EPL accepted versio
Quantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common
random matrix theory predictions within a wide "weak quantum chaos" regime.
This leads to a novel prediction for the rate of heating for cold atoms in
optical billiards with vibrating walls. The Hamiltonian matrix of the driven
system does not look like one from a Gaussian ensemble, but rather it is very
sparse. This sparsity can be characterized by parameters and that
reflect the percentage of large elements, and their connectivity respectively.
For we use a resistor network calculation that has direct relation to the
semi-linear response characteristics of the system.Comment: 7 pages, 5 figures, expanded improved versio
- …