1,974 research outputs found
High-redshift galaxies and low-mass stars
The sensitivity available to near-infrared surveys has recently allowed us to probe the galaxy population at z ≈ 7 and beyond. The existing Hubble Wide Field Camera 3 (WFC3) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Infrared Camera (VIRCam) instruments allow deep surveys to be undertaken well beyond 1 μm – a capability that will be further extended with the launch and commissioning of the James Webb Space Telescope (JWST). As new regions of parameter space in both colour and depth are probed, new challenges for distant galaxy surveys are identified. In this paper, we present an analysis of the colours of L- and T-dwarf stars in widely used photometric systems. We also consider the implications of the newly identified Y-dwarf population – stars that are still cooler and less massive than T-dwarfs for both the photometric selection and spectroscopic follow-up of faint and distant galaxies. We highlight the dangers of working in the low-signal-to-noise regime, and the potential contamination of existing and future samples. We find that Hubble/WFC3 and VISTA/VIRCam Y-drop selections targeting galaxies at z ∼ 7.5 are vulnerable to contamination from T- and Y-class stars. Future observations using JWST, targeting the z ∼ 7 galaxy population, are also likely to prove difficult without deep medium-band observations. We demonstrate that single emission line detections in typical low-signal-to-noise spectroscopic observations may also be suspect, due to the unusual spectral characteristics of the cool dwarf star population
Extragalactic Constraints on the Initial Mass Function
The local stellar mass density is observed to be significantly lower than the
value obtained from integrating the cosmic star formation history (SFH),
assuming that all the stars formed with a Salpeter initial mass function (IMF).
Even other favoured IMFs, more successful in reconciling the observed
stellar mass density with that inferred from the SFH, have difficulties in
reproducing the stellar mass density observed at higher redshift. In this study
we investigate to what extent this discrepancy can be alleviated for any
universal power-law IMF. We find that an IMF with a high-mass slope shallower
(2.15) than the Salpeter slope (2.35) reconciles the observed stellar mass
density with the cosmic star formation history, but only at low redshifts. At
higher redshifts we find that observed stellar mass densities are
systematically lower than predicted from the cosmic star formation history, for
any universal power-law IMF.Comment: 6 pages, 5 figures, accepted to MNRA
Characterising and identifying galaxy protoclusters
We study the characteristics of galaxy protoclusters using the latest L-GALAXIES semi-analytic model. Searching for protoclusters on a scale of ∼10 cMpc gives an excellent compromise between the completeness and purity of their galaxy populations, leads to high distinction from the field in overdensity space, and allows accurate determination of the descendant cluster mass. This scale is valid over a range of redshifts and selection criteria. We present a procedure for estimating, given a measured galaxy overdensity, the protocluster probability and its descendant cluster mass for a range of modelling assumptions, particularly taking into account the shape of the measurement aperture. This procedure produces lower protocluster probabilities compared to previous estimates using fixed size apertures. The relationship between active galactic nucleus (AGN) and protoclusters is also investigated and shows significant evolution with redshift; at z ∼ 2, the fraction of protoclusters traced by AGN is high, but the fraction of all AGNs in protoclusters is low, whereas atz ≥ 5 the fraction of protoclusters containing AGN is low, but most AGNs are in protoclusters. We also find indirect evidence for the emergence of a passive sequence in protoclusters at z ∼ 2, and note that a significant fraction of all galaxies reside in protoclusters at z ≥ 2, particularly the most massive
Nebular Line Emission During the Epoch of Reionization
Nebular emission lines associated with galactic HII regions carry information
about both physical properties of the ionised gas and the source of ionising
photons as well as providing the opportunity of measuring accurate redshifts
and thus distances once a cosmological model is assumed. While nebular line
emission has been extensively studied at lower redshift there are currently
only few constraints within the epoch of reionisation (EoR, ), chiefly due
to the lack of sensitive near-IR spectrographs. However, this will soon change
with the arrival of the Webb Telescope providing sensitive near-IR spectroscopy
covering the rest-frame UV and optical emission of galaxies in the EoR. In
anticipation of Webb we combine the large cosmological hydrodynamical
simulation Bluetides with photoionisation modelling to predict the nebular
emission line properties of galaxies at . We find good agreement
with the, albeit limited, existing direct and indirect observational
constraints on equivalent widths though poorer agreement with luminosity
function constraints.Comment: 17 pages, accepted to MNRAS, significant modification from v1.0 data
available at https://stephenmwilkins.github.io/BluetidesEmissionLines_Public
Detailed dust modelling in the L-Galaxies semi-analytic model of galaxy formation
We implement a detailed dust model into the L-Galaxies semi-analytical model which includes: injection of dust by type II and type Ia supernovae (SNe) and AGB stars; grain growth in molecular clouds; and destruction due to supernova-induced shocks, star formation, and reheating. Our grain growth model follows the dust content in molecular clouds and the inter-cloud medium separately, and allows growth only on pre-existing dust grains. At early times, this can make a significant difference to the dust growth rate. Above z ∼ 8, type II SNe are the primary source of dust, whereas below z ∼ 8, grain growth in molecular clouds dominates, with the total dust content being dominated by the latter below z ∼ 6. However, the detailed history of galaxy formation is important for determining the dust content of any individual galaxy. We introduce a fit to the dust-to-metal (DTM) ratio as a function of metallicity and age, which can be used to deduce the DTM ratio of galaxies at any redshift. At z ≲ 3, we find a fairly flat mean relation between metallicity and the DTM, and a positive correlation between metallicity and the dust-to-gas (DTG) ratio, in good agreement with the shape and normalisation of the observed relations. We also match the normalisation of the observed stellar mass – dust mass relation over the redshift range of 0 − 4, and to the dust mass function at z = 0. Our results are important in interpreting observations on the dust content of galaxies across cosmic time, particularly so at high redshift
Monsters in the dark: predictions for luminous galaxies in the early Universe from the BlueTides simulation
Using deep Hubble and Spitzer observations Oesch et al. have identified a bright (MUV ≈ −22) star-forming galaxy candidate at z ≈ 11. The presence of GN-z11 implies a number density ∼10−6 Mpc−3, roughly an order of magnitude higher than the expected value based on extrapolations from lower redshift. Using the unprecedented volume and high resolution of the BLUETIDES cosmological hydrodynamical simulation, we study the population of luminous rare objects at z > 10. The luminosity function in BLUETIDES implies an enhanced number of massive galaxies, consistent with the observation of GN-z11. We find about 30 galaxies at MUV ≈ −22 at z = 11 in the BLUETIDES volume, including a few objects about 1.5 mag brighter. The probability of observing GN-z11 in the volume probed by Oesch et al. is ∼13 per cent. The predicted properties of the rare bright galaxies at z = 11 in BLUETIDES closely match those inferred from the observations of GN-z11. BLUETIDES predicts a negligible contribution from faint AGN in the observed SED. The enormous increase in volume surveyed by WFIRST will provide observations of ∼1000 galaxies with MUV < −22 beyond z = 11 out to z = 13.5
Learning the relationship between galaxies spectra and their star formation histories using convolutional neural etworks and cosmological simulations
We present a new method for inferring galaxy star formation histories (SFH) using machine learning methods coupled with two cosmological hydrodynamic simulations. We train Convolutional Neural Networks to learn the relationship between synthetic galaxy spectra and high resolution SFHs from the EAGLE and Illustris models. To evaluate our SFH reconstruction we use Symmetric Mean Absolute Percentage Error (SMAPE), which acts as a true percentage error in the low-error regime. On dust-attenuated spectra we achieve high test accuracy (median SMAPE = 10.5%). Including the effects of simulated observational noise increases the error (12.5%), however this is alleviated by including multiple realisations of the noise, which increases the training set size and reduces overfitting (10.9%). We also make estimates for the observational and modelling errors. To further evaluate the generalisation properties we apply models trained on one simulation to spectra from the other, which leads to only a small increase in the error (median SMAPE ∼15%). We apply each trained model to SDSS DR7 spectra, and find smoother histories than in the VESPA catalogue. This new approach complements the results of existing SED fitting techniques, providing star formation histories directly motivated by the results of the latest cosmological simulations
Dust-obscured star-forming galaxies in the early universe
Motivated by recent observational constraints on dust reprocessed emission in star-forming galaxies at z ∼ 6 and above, we use the very large cosmological hydrodynamical simulation BLUETIDES to explore predictions for the amount of dust-obscured star formation in the early Universe (z > 8). BLUETIDES matches current observational constraints on both the UV luminosity function and galaxy stellar mass function and predicts that approximately 90 per cent of the star formation in high-mass (M* > 1010 M⊙) galaxies at z = 8 is already obscured by dust. The relationship between dust attenuation and stellar mass predicted by BLUETIDES is consistent with that observed at lower redshift. However, observations of several individual objects at z > 6 are discrepant with the predictions, though it is possible that their uncertainties may have been underestimated. We find that the predicted surface density of z ≥ 8 submm sources is below that accessible to current Herschel, SCUBA-2 and Atacama Large Millimetre Array (ALMA) submm surveys. However, as ALMA continues to accrue an additional surface area the population of z > 8 dust-obscured galaxies may become accessible in the near future
- …
