146 research outputs found
State and local agencies are more effective than the federal government in housing discrimination enforcement
Discrimination by those selling or renting homes is illegal under the 1968 Fair Housing Act (known as Title VIII), but housing discrimination and segregation in the US have not been eliminated. Federal, state, and local agencies are responsible for enforcing Title VIII, so in which part of government is enforcement most effective? In new research which analyses data from the ..
Race, Ethnicity, and Fair Housing Enforcement: A Regional Analysis
This article systematically compares how federal, state, and local civil rights agencies in the ten standard regions of the United States enforce fair housing law complaints filed by Blacks and Latinos. Specifically, it explores the extent to which regional outcomes at all three levels of government are decided favorably where, between 1989 and 2010, a racial or ethnic violation of the Fair Housing Act of 1968 or the Fair Housing Amendments Act of 1988 is alleged. The results reveal significant variations in outcomes between these groups across the country. Most importantly, the probability of an outcome favorable to the complainant depends on the region in which the complaint is filed, the race or ethnicity of the complainant, and the racial or ethnic composition and the number of complaints filed per capita in the state in which a complaint originates. In general, while complaints filed by Latinos are more likely to receive a favorable outcome than those filed by Blacks, favorability rates for Latinos are more dependent on the region where the complaint is processed than they are for Blacks
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
Orbital excitation blockade and algorithmic cooling in quantum gases
Interaction blockade occurs when strong interactions in a confined few-body
system prevent a particle from occupying an otherwise accessible quantum state.
Blockade phenomena reveal the underlying granular nature of quantum systems and
allow the detection and manipulation of the constituent particles, whether they
are electrons, spins, atoms, or photons. The diverse applications range from
single-electron transistors based on electronic Coulomb blockade to quantum
logic gates in Rydberg atoms. We have observed a new kind of interaction
blockade in transferring ultracold atoms between orbitals in an optical
lattice. In this system, atoms on the same lattice site undergo coherent
collisions described by a contact interaction whose strength depends strongly
on the orbital wavefunctions of the atoms. We induce coherent orbital
excitations by modulating the lattice depth and observe a staircase-type
excitation behavior as we cross the interaction-split resonances by tuning the
modulation frequency. As an application of orbital excitation blockade (OEB),
we demonstrate a novel algorithmic route for cooling quantum gases. Our
realization of algorithmic cooling utilizes a sequence of reversible OEB-based
quantum operations that isolate the entropy in one part of the system, followed
by an irreversible step that removes the entropy from the gas. This work opens
the door to cooling quantum gases down to ultralow entropies, with implications
for developing a microscopic understanding of strongly correlated electron
systems that can be simulated in optical lattices. In addition, the close
analogy between OEB and dipole blockade in Rydberg atoms provides a roadmap for
the implementation of two-qubit gates in a quantum computing architecture with
natural scalability.Comment: 6 pages, 4 figure
Evidence for a gene influencing heart rate on chromosome 5p13-14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program
BACKGROUND: Elevated resting heart rate has been shown in multiple studies to be a strong predictor of cardiovascular disease. Previous family studies have shown a significant heritable component to heart rate with several groups conducting genomic linkage scans to identify quantitative trait loci. METHODS: We performed a genome-wide linkage scan to identify quantitative trait loci influencing resting heart rate among 3,282 Caucasians and 3,989 African-Americans in three independent networks comprising the Family Blood Pressure Program (FBPP) using 368 microsatellite markers. Mean heart rate measurements were used in a regression model including covariates for age, body mass index, pack-years, currently drinking alcohol (yes/no), hypertension status and medication usage to create a standardized residual for each gender/ethnic group within each study network. This residual was used in a nonparametric variance component model to generate a LOD score and a corresponding P value for each ethnic group within each study network. P values from each ethnic group and study network were merged using an adjusted Fisher's combining P values method and the resulting P values were converted to LOD scores. The entire analysis was redone after individuals currently taking beta-blocker medication were removed. RESULTS: We identified significant evidence of linkage (LOD = 4.62) to chromosome 10 near 142.78 cM in the Caucasian group of HyperGEN. Between race and network groups we identified a LOD score of 1.86 on chromosome 5 (between 39.99 and 45.34 cM) in African-Americans in the GENOA network and the same region produced a LOD score of 1.12 among Caucasians within a different network (HyperGEN). Combining all network and race groups we identified a LOD score of 1.92 (P = 0.0013) on chromosome 5p13-14. We assessed heterogeneity for this locus between networks and ethnic groups and found significant evidence for low heterogeneity (P ≤ 0.05). CONCLUSION: We found replication (LOD > 1) between ethnic groups and between study networks with low heterogeneity on chromosome 5p13-14 suggesting that a gene in this region influences resting heart rate
A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System
Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general “house-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system
Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure
Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinant
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
APOM and high-density lipoprotein cholesterol are associated with lung function and per cent emphysema
Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however, there are few studies on the associations of cardiovascular genes with COPD
- …