16 research outputs found

    Lipid-mediated, reversible misfolding of a sterol-sensing domain protein

    No full text
    Cellular quality control requires recognition of common features of misfolding, and so is not typically associated with the specific targeting of individual proteins. However, physiologically regulated degradation of yeast HMG-CoA reductase (Hmg2p) occurs by the HRD endoplasmic reticulum quality control pathway, implying that Hmg2p undergoes a regulated transition to a quality control substrate in response to a sterol pathway molecule. Using in vitro structural assays, we now show that the pathway derivative farnesol causes Hmg2p to undergo a change to a less folded structure. The effect is reversible, biologically relevant by numerous criteria, highly specific for farnesol structure, and requires an intact Hmg2p sterol-sensing domain. This represents a distinct lipid-sensing function for this highly conserved motif that suggests novel approaches to cholesterol management. More generally, our observation of reversible small-molecule-mediated misfolding may herald numerous examples of regulated quality control to be discovered in biology or applied in the clinic

    Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane

    No full text
    Misfolded proteins are eliminated from the endoplasmic reticulum (ER) by retrotranslocation into the cytosol, a pathway hijacked by certain viruses to destroy MHC class I heavy chains. The translocation of polypeptides across the ER membrane requires their polyubiquitination and subsequent extraction from the membrane by the p97 ATPase [also called valosin-containing protein (VCP) or, in yeast, Cdc48]. In higher eukaryotes, p97 is bound to the ER membrane by a membrane protein complex containing Derlin-1 and VCP-interacting membrane protein (VIMP). How the ubiquitination machinery is recruited to the p97/Derlin/VIMP complex is unclear. Here, we report that p97 interacts directly with several ubiquitin ligases and facilitates their recruitment to Derlin-1. During retrotranslocation, a substrate first interacts with Derlin-1 before p97 and other factors join the complex. These data, together with the fact that Derlin-1 is a multispanning membrane protein forming homo-oligomers, support the idea that Derlin-1 is part of a retrotranslocation channel that is associated with both the polyubiquitination and p97-ATPase machineries

    Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1

    No full text
    Eukaryotic cells maintain proteostasis by quality control (QC) degradation. These pathways can specifically target a wide variety of distinct misfolded proteins, and so are important for management of cellular stress. Although a number of conserved QC pathways have been described in yeast, the E3 ligases responsible for cytoplasmic QC are unknown. We now show that Ubr1 and San1 mediate chaperone-dependent ubiquitination of numerous misfolded cytoplasmic proteins. This action of Ubr1 is distinct from its role in the “N-end rule.” In this capacity, Ubr1 functions to protect cells from proteotoxic stresses. Our phenotypic and biochemical studies of Ubr1 and San1 indicate that two strategies are employed for cytoplasmic QC: chaperone-assisted ubiquitination by Ubr1 and chaperone-dependent delivery to nuclear San1. The broad conservation of Ubr ligases and the relevant chaperones indicates that these mechanisms will be important in understanding both basic and biomedical aspects of cellular proteostasis

    E2-25K mediates US11-triggered retro-translocation of MHC class I heavy chains in a permeabilized cell system

    No full text
    In cells expressing human cytomegalovirus US11 protein, newly synthesized MHC class I heavy chains (HCs) are rapidly dislocated from the endoplasmic reticulum (ER) and degraded in the cytosol, a process that is similar to ER-associated degradation (ERAD), the pathway used for degradation of misfolded ER proteins. US11-triggered movement of HCs into the cytosol requires polyubiquitination, but it is unknown which ubiquitin-conjugating and ubiquitin-ligase enzymes are involved. To identify the ubiquitin-conjugating enzyme (E2) required for dislocation, we used a permeabilized cell system, in which endogenous cytosol can be replaced by cow liver cytosol. By fractionating the cytosol, we show that E2-25K can serve as the sole E2 required for dislocation of HCs in vitro. Purified recombinant E2-25K, together with components that convert this E2 to the active E2-ubiquitin thiolester form, can substitute for crude cytosol. E2-25K cannot be replaced by the conjugating enzymes HsUbc7/Ube2G2 or Ube2G1, even though HsUbc7/Ube2G2 and its yeast homolog Ubc7p are known to participate in ERAD. The activity of E2-25K, as measured by ubiquitin dimer formation, is strikingly enhanced when added to permeabilized cells, likely by membrane-bound ubiquitin protein ligases. To identify these ligases, we tested RING domains of various ligases for their activation of E2-25K in vitro. We found that RING domains of gp78/AMFR, a ligase previously implicated in ERAD, and MARCHVII/axotrophin, a ligase of unknown function, greatly enhanced the activity of E2-25K. We conclude that in permeabilized, US11-expressing cells polyubiquitination of the HC substrate can be catalyzed by E2-25K, perhaps in cooperation with the ligase MARCHVII/axotrophin
    corecore