347 research outputs found

    Improved calibration of vertical scanning optical profilometers for spherical profiles measurements

    Get PDF
    A new method for calibrating optical scanning profilometers is presented. Especially adapted to spherical and aspherical profile measurements, it shows an increase of accuracy bigger than one order of magnitude for radius of curvature measurements. Calibration of vertical scaling is obtained with a reduction of its uncertainty by a factor larger than 2, which also demonstrates the advantage of this method for any surface measurements. Using commercially available reference balls, this method is easily implementabl

    Metastable Se6 as a ligand for Ag+: from isolated molecular to polymeric 1D and 2D structures

    Get PDF
    Attempts to prepare the hitherto unknown Se6 2+ cation by the reaction of elemental selenium and Ag[A] ([A]- = [Sb(OTeF5)6]-, [Al(OC(CF3)3)4]-) in SO2 led to the formation of [(OSO)Ag(Se6)Ag(OSO)][Sb(OTeF5)6]2 1 and [(OSO)2Ag(Se6)Ag(OSO)2][Al(OC(CF3)3)4]2 2a. 1 could only be prepared by using bromine as co-oxidant, however, bulk 2b (2a with loss of SO2) was accessible from Ag[Al(OC(CF3)3)4] and grey Se in SO2 (chem. analysis). The reactions of Ag[MF6] (M= As, Sb) and elemental selenium led to crystals of 1/∞{[Ag(Se6)]∞[Ag2(SbF6)3]∞} 3 and {1/∞[Ag(Se6)Ag]∞}[AsF6]2 4. Pure bulk 4 was best prepared by the reaction of Se4[AsF6]2, silver metal and elemental selenium. Attempts to prepare bulk 1 and 3 were unsuccessful. 1–4 were characterized by single-crystal X-ray structure determinations, 2b and 4 additionally by chemical analysis and 4 also by X-ray powder diffraction, FT-Raman and FT-IR pectroscopy. Application of the PRESTO III sequence allowed for the first time 109Ag MAS NMR investigations of 4 as well as AgF, AgF2, AgMF6 and {1/∞[Ag(I2)]∞}[MF6] (M= As, Sb). Compounds 1 and 2a/b, with the very large counter ions, contain isolated [Ag(Se6)Ag]2+ heterocubane units consisting of a Se6 molecule bicapped by two silver cations (local D3d sym). 3 and 4, with the smaller anions, contain close packed stacked arrays of Se6 rings with Ag+ residing in octahedral holes. Each Ag+ ion coordinates to three selenium atoms of each adjacent Se6 ring. 4 contains [Ag(Se6)+]∞ stacks additionally linked by Ag(2)+ into a two dimensional network. 3 features a remarkable 3-dimensional [Ag2(SbF6)3]- anion held together by strong Sb–F 
 Ag contacts between the component Ag+ and [SbF6]- ions. The hexagonal channels formed by the [Ag2(SbF6)3]- anions are filled by stacks of [Ag(Se6)+]∞ cations. Overall 1–4 are new members of the rare class of metal complexes of neutral main group elemental clusters, in which the main group element is positively polarized due to coordination to a metal ion. Notably, 1 to 4 include the commonly metastable Se6 molecule as a ligand. The structure, bonding and thermodynamics of 1 to 4 were investigated with the help of quantum chemical calculations (PBE0/TZVPP and (RI-)MP2/TZVPP, in part including COSMO solvation) and Born–Fajans–Haber-cycle calculations. From an analysis of all the available data it appears that the formation of the usually metastable Se6 molecule from grey selenium is thermodynamically driven by the coordination to the Ag+ ions

    A standard protocol for reporting species distribution models

    Get PDF
    Species distribution models (SDMs) constitute the most common class of models across ecology, evolution and conservation. The advent of ready-to-use software packages and increasing availability of digital geoinformation have considerably assisted the application of SDMs in the past decade, greatly enabling their broader use for informing conservation and management, and for quantifying impacts from global change. However, models must be fit for purpose, with all important aspects of their development and applications properly considered. Despite the widespread use of SDMs, standardisation and documentation of modelling protocols remain limited, which makes it hard to assess whether development steps are appropriate for end use. To address these issues, we propose a standard protocol for reporting SDMs, with an emphasis on describing how a study's objective is achieved through a series of modeling decisions. We call this the ODMAP (Overview, Data, Model, Assessment and Prediction) protocol, as its components reflect the main steps involved in building SDMs and other empirically-based biodiversity models. The ODMAP protocol serves two main purposes. First, it provides a checklist for authors, detailing key steps for model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating peer review and expert evaluation of model quality, as well as meta-analyses. We detail all elements of ODMAP, and explain how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an interactive web-based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and adoption by the scientific community

    Model averaging in ecology: a review of Bayesian, information-theoretic and tactical approaches for predictive inference

    Get PDF
    In ecology, the true causal structure for a given problem is often not known, and several plausible models and thus model predictions exist. It has been claimed that using weighted averages of these models can reduce prediction error, as well as better reflect model selection uncertainty. These claims, however, are often demonstrated by isolated examples. Analysts must better understand under which conditions model averaging can improve predictions and their uncertainty estimates. Moreover, a large range of different model averaging methods exists, raising the question of how they differ in their behaviour and performance. Here, we review the mathematical foundations of model averaging along with the diversity of approaches available. We explain that the error in model‐averaged predictions depends on each model's predictive bias and variance, as well as the covariance in predictions between models, and uncertainty about model weights. We show that model averaging is particularly useful if the predictive error of contributing model predictions is dominated by variance, and if the covariance between models is low. For noisy data, which predominate in ecology, these conditions will often be met. Many different methods to derive averaging weights exist, from Bayesian over information‐theoretical to cross‐validation optimized and resampling approaches. A general recommendation is difficult, because the performance of methods is often context dependent. Importantly, estimating weights creates some additional uncertainty. As a result, estimated model weights may not always outperform arbitrary fixed weights, such as equal weights for all models. When averaging a set of models with many inadequate models, however, estimating model weights will typically be superior to equal weights. We also investigate the quality of the confidence intervals calculated for model‐averaged predictions, showing that they differ greatly in behaviour and seldom manage to achieve nominal coverage. Our overall recommendations stress the importance of non‐parametric methods such as cross‐validation for a reliable uncertainty quantification of model‐averaged predictions

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    On the frequency of auroras over Germany

    Get PDF
    Se muestra una recopilaciĂłn de 171 observaciones de auroras alemanas entre 1946 y 1964, las cuales no se habĂ­an publicado previamente. Los datos se analizaron en relaciĂłn con el Ă­ndice Kp, el nĂșmero de manchas solares y las variaciones estacionales. TambiĂ©n se incluye una lista completa de dichas observaciones. doi: https://doi.org/10.22201/igeof.00167169p.2011.50.4.15

    Erhard Eylmann und die BegrĂŒndung der australischen Ethnologie

    No full text
    Erhard Eylmann founder of Ethnology in Australia . Life and history of Erhard Eylmann (1860–1926) and his travels and studies in Australia, includes listing by tribe of his anthropological work — Naryngeri, DiĂ€ri, Lurritja, Aranda, etc. during his fieldwork 1896–1900 and later. He gives details of the natives, e.g. physical appearance, anthropometry, language-polysyllabic — details of grammar, sign language — meanings — smoke signals, details of ritual and non-ritual mutilations, tooth avulsion, medicine means, tongue operation, sex rituals and behaviour, social organisation, population density, totemism, age grouping, etc. Later Eylmann spent a long study on begging in South Australia and some studies on firemaking. In 1908 he published his fundamental book on Australian anthropology “The Natives on the Colony of South Australia” (in German). There is no doubt that Eylmann is a singular scientist such as Gillen and Spencer
    • 

    corecore