308 research outputs found

    Interview with Lydia Groves

    Get PDF
    An interview with Lydia Groves regarding her experiences in a one-room school house.https://scholars.fhsu.edu/ors/1063/thumbnail.jp

    Mobile Phone Sensors Can Discern Medication-related Gait Quality Changes in Parkinson\u27s Patients in the Home Environment

    Get PDF
    Patients with Parkinson\u27s Disease (PD) experience daytime symptom fluctuations, which result in small amplitude, slow and unstable walking during times when medication attenuates. The ability to identify dysfunctional gait patterns throughout the day from raw mobile phone acceleration and gyroscope signals would allow the development of applications to provide real-time interventions to facilitate walking performance by, for example, providing external rhythmic cues. Patients (n = 20, mean Hoehn and Yahr: 2.25) had their ambulatory data recorded and were directly observed twice during one day: once after medication abstention, (OFF) and once approximately 30 min after intake of their medication (ON). Regularized generalized linear models (RGLM), neural networks (NN), and random forest (RF) classification models were individually trained for each participant. Across all subjects, our best performing classifier on average achieved an accuracy of 92.5%. This study demonstrated that smartphone accelerometers and gyroscopes can be used to distinguish between ON versus OFF times, potentially making smartphones useful intervention tools

    Retrieval enhances eyewitness suggestibility to misinformation in free and cued recall.

    Full text link

    An assessment of the use of sediment traps for estimating upper ocean particle fluxes

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2007. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 65 (2007): 345–416, doi: 10.1357/002224007781567621This review provides an assessment of sediment trap accuracy issues by gathering data to address trap hydrodynamics, the problem of zooplankton "swimmers," and the solubilization of material after collection. For each topic, the problem is identified, its magnitude and causes reviewed using selected examples, and an update on methods to correct for the potential bias or minimize the problem using new technologies is presented. To minimize hydrodynamic biases due to flow over the trap mouth, the use of neutrally buoyant sediment traps is encouraged. The influence of swimmers is best minimized using traps that limit zooplankton access to the sample collection chamber. New data on the impact of different swimmer removal protocols at the US time-series sites HOT and BATS are compared and shown to be important. Recent data on solubilization are compiled and assessed suggesting selective losses from sinking particles to the trap supernatant after collection, which may alter both fluxes and ratios of elements in long term and typically deeper trap deployments. Different methods are needed to assess shallow and short- term trap solubilization effects, but thus far new incubation experiments suggest these impacts to be small for most elements. A discussion of trap calibration methods reviews independent assessments of flux, including elemental budgets, particle abundance and flux modeling, and emphasizes the utility of U-Th radionuclide calibration methods.WG meetings and production of this report was partially supported by the U.S. National Science Foundation via grants to the SCOR. Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation, Swedish Research Council, the International Atomic Energy Agency through its support of the Marine Environmental Laboratory that also receives support from the Government of the Principality of Monaco, and the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship

    Levels and Concentration Ratios of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Serum and Breast Milk in Japanese Mothers

    Get PDF
    Blood and/or breast milk have been used to assess human exposure to various environmental contaminants. Few studies have been available to compare the concentrations in one matrix with those in another. The goals of this study were to determine the current levels of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in Japanese women, with analysis of the effects of lifestyle and dietary habits on these levels, and to develop a quantitative structure–activity relationship (QSAR) with which to predict the ratio of serum concentration to breast milk concentration. We measured PBDEs and PCBs in 89 paired samples of serum and breast milk collected in four regions of Japan in 2005. The geometric means of the total concentrations of PBDE (13 congeners) in milk and serum were 1.56 and 2.89 ng/g lipid, respectively, whereas those of total PCBs (15 congeners) were 63.9 and 37.5 ng/g lipid, respectively. The major determinant of total PBDE concentration in serum and milk was the geographic area within Japan, whereas nursing duration was the major determinant of PCB concentration. BDE-209 was the most predominant PBDE congener in serum but not in milk. The excretion of BDE 209 in milk was lower than that of BDE 47 and BDE 153. QSAR analysis revealed that two parameters, calculated octanol/water partition and number of hydrogen-bond acceptors, were significant descriptors. During the first weeks of lactation, the predicted partitioning of PBDE and PCB congeners from serum to milk agreed with the observed values. However, the prediction became weaker after 10 weeks of nursing

    Pulse Intensity Effects of Burst and Tonic Spinal Cord Stimulation on Neural Responses to Brushing in Patients With Neuropathic Pain.

    Get PDF
    Objectives: Tonic spinal cord stimulation (SCS) is accompanied by paresthesia in affected body regions. Comparatively, the absence of paresthesia with burst SCS suggests different involvement of the dorsal column system conveying afferent impulses from lowthreshold mechanoreceptors. This study evaluated cortical activation changes during gentle brushing of a pain-free leg during four SCS pulse intensities to assess the effect of intensity on recruitment of dorsal column system fibers during burst and tonic SCS. Materials and Methods: Twenty patients using SCS (11 burst, nine tonic) for neuropathic leg pain participated. Brushing was administered to a pain-free area of the leg during four SCS intensities:therapeutic (100%),medium(66%),low(33%),andnostimulation. Whole-brain electroencephalography was continuously recorded. Changes in spectral power during brushing were evaluated using the event-related desynchronization (ERD) method in theta (4–7Hz),alpha(8–13 Hz), and beta (16–24 Hz) frequency bands. Results: Brushing was accompanied by a suppression of cortical oscillations in the range 4–24 Hz. Stronger intensities of burst and tonic SCS led to less suppression of 4–7 Hz and 8–13 Hz bands in parietal electrodes, and in central electrodes in the 16–24 Hz band, with the strongest, statistically significant suppression at medium intensity. Tonic SCS showed a stronger reduction in 4–7 Hz oscillations over right sensorimotor electrodes, and over right frontal and left sensorimotor electrodes in the 8–13 Hz band, compared to burst SCS. Conclusions: Results suggest that burst and tonic SCS are mediated by both different and shared mechanisms. Attenuated brushing-related ERD with tonic SCS suggests a gating of cortical activation by afferent impulses in the dorsal column, whereas burst may engage different pathways. Diminished brushing-related ERD at medium and therapeutic intensities of burst and tonic SCS points towards a nonlinear effect of SCS on somatosensory processing
    corecore