53 research outputs found
EMSL Quarterly Highlights Report Second Quarter, Fiscal Year 2010 (January 1, 2010 through March 31, 2010)
The Environmental Molecular Sciences Laboratory (EMSL) is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. EMSL is operated by PNNL for the DOE-Office of Biological and Environmental Research. At one location, EMSL offers a comprehensive array of leading-edge resources and expertise. Access to the instrumentation and expertise is obtained on a peer-reviewed proposal basis. Staff members work with researchers to expedite access to these capabilities. The "EMSL Quarterly Highlights Report" documents current research and activities of EMSL staff and users
Tobacco\u27s Minor Alkaloids: Effects on Place Conditioning and Nucleus Accumbens Dopamine Release in Adult and Adolescent Rats
Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and rewarding and/or aversive properties of nicotine (0.2-0.8 mg/kg), cotinine (0.5-5.0 mg/kg), anatabine (0.5-5.0 mg/kg), and myosmine (5.0-20.0 mg/kg) through in vivo microdialysis and place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine release at both ages, and anatabine and myosmine increased dopamine release in adults, but not adolescents. The dopamine release results were not related to place conditioning, as nicotine and cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening drug-context associations following initiation of drug use, it may have little involvement in the motivational effects of tobacco constituents once these associations have been acquired. Effects of myosmine and anatabine on dopamine release may require a fully developed dopamine system, since no effects of these tobacco alkaloids were observed during adolescence. In summary, while anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in tobacco dependence in adults, the nature of that role remains to be elucidated
Undertaking Rehabilitation Research During the COVID-19 Pandemic: Emergent Strategies From a Trainee-Faculty Workshop
BackgroundThe COVID-19 pandemic has disrupted everyday rehabilitation research. Many academic institutions have halted in-person human research including rehabilitation sciences. Researchers are faced with several barriers to continuing their research programs. The purpose of this perspective article is to report the results of an interdisciplinary workshop aimed at understanding the challenges and corresponding strategies for conducting rehabilitation research during the COVID-19 pandemic.MethodsTwenty-five rehabilitation researchers (17 trainees and eight faculty) attended a 2-h facilitated online workshop in to discuss challenges and strategies they had experienced and employed to conduct rehabilitation research during the COVID-19 pandemic.ResultsRehabilitation researchers reported challenges with (1) pandemic protocol adjustments, (2) participant accessibility, and (3) knowledge dissemination, along with corresponding strategies to these challenges. Researchers experienced disruptions in study outcomes and intervention protocols to adhere to public health guidelines and have suggested implementing novel virtual approaches and study toolkits to facilitate offsite assessment. Participant accessibility could be improved by engaging community stakeholders in protocol revisions to ensure equity, safety, and feasibility. Researchers also experienced barriers to virtual conferences and publication, suggested opportunities for smaller networking events, and revisiting timeframes for knowledge dissemination.ConclusionThis perspective article served as a catalyst for discussion among rehabilitation researchers to identify novel and creative approaches that address the complexities of conducting rehabilitation research during the COVID-19 pandemic and beyond
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Recommended from our members
EMSL Quarterly Highlights Report: FY09, 3rd Quarter
This report outlines the science and publications that occurred at EMSL during the 3rd quarter of FY09
Recommended from our members
EMSL Quarterly Highlights Report: FY09, 4th Quarter
This document describes the science, accomplishments, and publications that occurred during the fourth quarter of Fiscal Year 2009 at EMSL
Recommended from our members
EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2010
This report outlines the science, awards and honors, and publications that resulted during the first quarter of Fiscal Year 2010 at EMSL
Recommended from our members
EMSL Quarterly Highlights Report Second Quarter, Fiscal Year 2010 (January 1, 2010 through March 31, 2010)
The Environmental Molecular Sciences Laboratory (EMSL) is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. EMSL is operated by PNNL for the DOE-Office of Biological and Environmental Research. At one location, EMSL offers a comprehensive array of leading-edge resources and expertise. Access to the instrumentation and expertise is obtained on a peer-reviewed proposal basis. Staff members work with researchers to expedite access to these capabilities. The "EMSL Quarterly Highlights Report" documents current research and activities of EMSL staff and users
Vaping Synthetic Cannabinoids: A Novel Preclinical Model of E-Cigarette Use in Mice
Smoking is the most common route of administration for cannabis; however, vaping cannabis extracts and synthetic cannabinoids (“fake marijuana”) in electronic cigarette devices has become increasingly popular. Yet, most animal models used to investigate biological mechanisms underlying cannabis use employ injection as the route of administration. This study evaluated a novel e-cigarette device that delivers aerosolized cannabinoids to mice. The effects of aerosolized and injected synthetic cannabinoids (CP 55,940, AB-CHMINACA, XLR-11, and JWH-018) in mice were compared in a battery of bioassays in which psychoactive cannabinoids produce characteristic effects. The most potent cannabinoids (CP 55,940 and AB-CHMINACA) produced the full cannabinoid profile (ie, hypothermia, hypolocomotion, and analgesia), regardless of the route of administration. In contrast, aerosolized JWH-018 and XLR-11 did not produce the full profile of cannabimimetic effects. Results of time course analysis for hypothermia showed that aerosol exposure to CP 55,940 and AB-CHMINACA produced faster onset of effects and shorter duration of action than injection. The ability to administer cannabinoids to rodents using the most common route of administration among humans provides a method for collecting preclinical data with enhanced translational relevance
- …