10 research outputs found

    Quantum Tunneling of Josephson Vortices in High-Impedance Long Junctions

    Get PDF
    In the last decades, superconducting devices have emerged as a promising platform for quantum technologies, including quantum sensing and quantum computing. Their key elements are Josephson junctions, which allow for coherent supercurrent tunneling between two weakly linked superconductors. If such a junction is extended in one direction to a long junction, the superconducting phase difference can vary in space and time and may allow for quantized phase windings that drive supercurrent vortices. The physics of such Josephson vortices spans from nonlinear soliton dynamics with relativistic effects to technical applications like microwave generation and amplification. In all these cases the vortices behave as non-quantum particles. This restriction to classical behavior originates in the long junction\u27s limited geometrical properties, in particular its electrode inductance. The advent of superconducting high-kinetic inductance circuits relaxes these constraints and enables an increased junction impedance, which goes along with the vortices\u27 quantumness. In this work it is demonstrated that the junction impedance can be enhanced beyond the geometric limitations, which facilitates various applications. A hybrid system is studied particularly, that consists of a high-impedance long junction embedded in a microwave resonator. This galvanic coupling enables the dispersive readout scheme to determine the quantum states of different vortex configurations. In the vortices\u27 quantum regime, coherent tunneling of single vortices in a two-level system is observed, forming a Josephson vortex quantum bit. Quantum Rabi oscillations with energy relaxation and dephasing times in the microsecond range are measured, making the system promising for future quantum technologies

    Random telegraph fluctuations in granular microwave resonators

    Full text link
    Microwave circuit electrodynamics of disordered superconductors is a very active research topic spawning a wide range of experiments and applications. For compact superconducting circuit elements, the transition to an insulating state poses a limit to the maximum attainable kinetic inductance. It is therefore vital to study the fundamental noise properties of thin films close to this transition, particularly in situations where a good coherence and temporal stability is required. In this paper, we present measurements on superconducting granular aluminum microwave resonators with high normal state resistances, where the influence of the superconductor to insulator phase transition is visible. We trace fluctuations of the fundamental resonance frequency and observe, in addition to a 1/f noise pattern, a distinct excess noise, reminiscent of a random telegraph signal. The excess noise shows a strong dependency on the resistivity of the films as well as the sample temperature, but not on the applied microwave power.Comment: 6 pages, 4 figure

    Observation of giant two-level systems in a granular superconductor

    Full text link
    Disordered thin films are a common choice of material for superconducting, high impedance circuits used in quantum information or particle detector physics. A wide selection of materials with different levels of granularity are available, but, despite low microwave losses being reported for some, the high degree of disorder always implies the presence of intrinsic defects. Prominently, quantum circuits are prone to interact with two-level systems (TLS), typically originating from solid state defects in the dielectric parts of the circuit, like surface oxides or tunneling barriers. We present an experimental investigation of TLS in granular aluminum thin films under applied mechanical strain and electric fields. The analysis reveals a class of strongly coupled TLS having electric dipole moments up to 30 eA, an order of magnitude larger than dipole moments commonly reported for solid state defects. Notably, these large dipole moments appear more often in films with a higher resistivity. Our observations shed new light on granular superconductors and may have implications for their usage as a quantum circuit material.Comment: 12 pages, 8 figure

    Fluxons in high-impedance long Josephson junctions

    Get PDF
    The dynamics of fluxons in long Josephson junctions is a well-known example of soliton physics and allows for studying highly nonlinear relativistic electrodynamics on a microscopic scale. Such fluxons are supercurrent vortices that can be accelerated by bias current up to the Swihart velocity, which is the characteristic velocity of electromagnetic waves in the junction. We experimentally demonstrate slowing down relativistic fluxons in Josephson junctions whose bulk superconducting electrodes are replaced by thin films of a high kinetic inductance superconductor. Here, the amount of magnetic flux carried by each supercurrent vortex is significantly smaller than the magnetic flux quantum 0_0. Our data show that the Swihart velocity is reduced by about one order of magnitude compared to conventional long Josephson junctions. At the same time, the characteristic impedance is increased by an order of magnitude, which makes these junctions suitable for a variety of applications in superconducting electronics

    Fluxons in high-impedance long Josephson junctions

    Get PDF
    The dynamics of fluxons in long Josephson junctions is a well-known example of soliton physics and allows for studying highly nonlinear relativistic electrodynamics on a microscopic scale. Such fluxons are supercurrent vortices that can be accelerated by bias current up to the Swihart velocity, which is the characteristic velocity of electromagnetic waves in the junction. We experimentally demonstrate slowing down relativistic fluxons in Josephson junctions whose bulk superconducting electrodes are replaced by thin films of a high kinetic inductance superconductor. Here, the amount of magnetic flux carried by each supercurrent vortex is significantly smaller than the magnetic flux quantum 0_0. Our data show that the Swihart velocity is reduced by about one order of magnitude compared to conventional long Josephson junctions. At the same time, the characteristic impedance is increased by an order of magnitude, which makes these junctions suitable for a variety of applications in superconducting electronics

    Rabi oscillations in a superconducting nanowire circuit

    Get PDF
    We investigate the circuit quantum electrodynamics of anharmonic superconducting nanowire oscillators. The sample circuit consists of a capacitively shunted nanowire with a width of about 20 nm and a varying length up to 350 nm, capacitively coupled to an on-chip resonator. By applying microwave pulses we observe Rabi oscillations, measure coherence times and the anharmonicity of the circuit. Despite the very compact design, simple top-down fabrication and high degree of disorder in the oxidized (granular) aluminum material used, we observe lifetimes in the microsecond range

    Quantum Tunneling of Josephson Vortices in High-Impedance Long Junctions

    Get PDF
    In the last decades, superconducting devices have emerged as a promising platform for quantum technologies, including quantum sensing and quantum computing. Their key elements are Josephson junctions, which allow for coherent supercurrent tunneling between two weakly linked superconductors. If such a junction is extended in one direction to a long junction, the superconducting phase difference can vary in space and time and may allow for quantized phase windings that drive supercurrent vortices

    Bibliography

    No full text
    corecore