213 research outputs found

    An Investigation into Long Range Detection of Passive UHF RFID Tags

    Get PDF
    Radio frequency identification tags (RFID) have been in use for a number of years, in a variety of applications. They are a small computer chip like device that can range in size from a thumbnail to a credit card size device. They consist of a small silicon chip, and an antenna used to receive and transmit data. When a tag receives a signal from a valid reader it sends a response, typically a tag ID and any other requested/available data back to the reader device. The newer range of RFID chips that are coming into use now use higher frequencies (UHF) and are able to be detected, or transmitted to, from longer distances (1 – 10 m) with a conventional handheld reader. This increased distance alone presents many opportunities for users and misusers alike. These include but are not limited to passive scanning/sniffing of information in transit, deception, disruption of signal, and injection of malicious or false data into the broadcast envelope. There is no evidence currently in the literature of long-range scans or attacks on UHF RFID tag or supporting infrastructure. Given that these tags are now being used in military applications, an improved understanding of their vulnerabilities from long range scanning techniques will contribute to national security. An understanding of the long range scanning potential of these devices also will allow further study into the possible misuse of RFID technology in society by governments, business and individuals

    Microperimetry and multimodal imaging in polypoidal choroidal vasculopathy

    Get PDF
    Polypoidal choroidal vasculopathy (PCV) is a degenerative macular disease. The study determined the topographical concordance in the areal extent of PCV, defined by indocyanine green angiography (ICGA), and the corresponding outcomes from spectral-domain optical coherence tomography (SD-OCT) and microperimetry, in 25 individuals (25 eyes) who had undergone 3 months of anti-vascular endothelial growth factor treatment. The differential light sensitivity within 10° eccentricity was evaluated by Pattern Deviation probability analysis. The concordances and proportional areal extents of the abnormality for ICGA, SD-OCT and microperimetry were compared. The concordance in the areal extent between all three modalities was 59%. The median concordance between ICGA and microperimetry was 60%; between ICGA and SD-OCT, 70%; and between SD-OCT and microperimetry, 72%. SD-OCT and microperimetry each identified a greater areal extent (>20%) compared to ICGA in 13 and 19 eyes, respectively. A greater areal extent (>20%) was present in 9 eyes for microperimetry compared to SD-OCT and in 5 eyes for SD-OCT compared to microperimetry. SD-OCT and microperimetry each identified a greater area of abnormality than ICGA which supports the clinical utility of SD-OCT. Strong concordance was present between SD-OCT and microperimetry; however, microperimetry identified additional areas of functional abnormality

    Wild Dog Management: Best Practice Manual

    Get PDF
    Wild dogs (all wild-living dogs including pure-bred dingoes, hybrids, and domestic dogs running wild) are one of the major pest species impacting on grazing industries across mainland Australia. In this Manual, the text refers to dingoes where the information is derived from studies of essentially pure dingoes. Elsewhere the text usually refers to the more generic term, wild dogs. The information in this Manual is based on scientific studies, including detailed evaluations of techniques and strategies, as well as considerable practical experience from doggers, Department of Agriculture and Food staff and land managers. Much of this Manual focuses on sheep enterprises which, with goat enterprises, are at the highest risk of wild dog predation. Although the effects of wild dogs on cattle can also be significant and widespread, wild dogs are easier to control in cattle areas.https://researchlibrary.agric.wa.gov.au/bulletins/1211/thumbnail.jp

    In safe hands: child health data storage, linkage and consent for use

    Get PDF
    While there is potential for societal benefit from linkage and integration of large datasets, there are gaps in our understanding of the implications for children and young people, and limited inclusion of their views within this discourse. We aimed to understand the views and expectations of children, young people and their parents/caregivers in Aotearoa New Zealand regarding child health data storage, linkage and consent for use. This qualitative study included 24 Māori and non-Māori children, young people and their families across five focus groups, recruited from a community-based health service. A mixed Māori and non-Māori research team facilitated participant recruitment and data collection. Child, adolescent and parent/caregiver groups were held separately. Sessions were audio-recorded and the verbatim transcripts were analysed thematically. We identified three themes: (i) I am more than a number: seeing patients as people; (ii) In safe hands: data as power; and (iii) What are your intentions with my data? Consent as an active relationship. A key challenge was the reductive and stigmatizing potential of data integration for minoritised groups. Hypothetical discussions of data sharing and linkage were contingent on trust between the participant and the health professional, with negotiated data ownership. Consent was conceived as an active relationship needing renewal and renegotiation as children reached adulthood. Current consent processes for ongoing use of child data require further deliberation. Without a strong ethical and child rights-based approach to issues of child health data management, consent and linkage, we risk exacerbating health inequities and experiences of breach of trust

    Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma

    Get PDF
    Primary aldosteronism is the most frequent cause of secondary hypertension and is associated with increased morbidity and mortality compared with hypertensive controls. The central diagnostic challenge is the differentiation between bilateral and unilateral disease, which determines treatment options. Bilateral adrenal venous sampling, currently recommended for differential diagnosis, is an invasive procedure with several drawbacks, making it desirable to develop novel noninvasive diagnostic tools. When investigating the expression pattern of chemokine receptors by quantitative real-time polymerase chain reaction and immunohistochemistry, we observed high expression of CXCR4 (CXC chemokine receptor type 4) in aldosterone-producing tissue in normal adrenals, adjacent adrenal cortex from adrenocortical adenomas, and in aldosterone-producing adenomas (APA), correlating strongly with the expression of CYP11B2 (aldosterone synthase). In contrast, CXCR4 was not detected in the majority of nonfunctioning adenomas that are frequently found coincidently. The specific CXCR4 ligand 68Ga-pentixafor has recently been established as radiotracer for molecular imaging of CXCR4 expression and showed strong and specific binding to cryosections of APAs in our study. We further investigated 9 patients with primary aldosteronism because of APA by 68Ga-pentixafor-positron emission tomography. The tracer uptake was significantly higher on the side of increased adrenocortical aldosterone secretion in patients with APAs compared with patients investigated by 68Ga-pentixafor-positron emission tomography for other causes. Molecular imaging of aldosterone-producing tissue by a CXCR4-specific ligand may, therefore, be a highly promising tool for noninvasive characterization of patients with APAs

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore