14 research outputs found

    3D Domain Swapping Causes Extensive Multimerisation of Human Interleukin-10 When Expressed In Planta

    Get PDF
    Heterologous expression platforms of biopharmaceutical proteins have been significantly improved over the last decade. Further improvement can be established by examining the intrinsic properties of proteins. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with a short half-life that plays an important role in re-establishing immune homeostasis. This homodimeric protein of 36 kDa has significant therapeutic potential to treat inflammatory and autoimmune diseases. In this study we show that the major production bottleneck of human IL-10 is not protein instability as previously suggested, but extensive multimerisation due to its intrinsic 3D domain swapping characteristic. Extensive multimerisation of human IL-10 could be visualised as granules in planta. On the other hand, mouse IL-10 hardly multimerised, which could be largely attributed to its glycosylation. By introducing a short glycine-serine-linker between the fourth and fifth alpha helix of human IL-10 a stable monomeric form of IL-10 (hIL-10mono) was created that no longer multimerised and increased yield up to 20-fold. However, hIL-10mono no longer had the ability to reduce pro-inflammatory cytokine secretion from lipopolysaccharide-stimulated macrophages. Forcing dimerisation restored biological activity. This was achieved by fusing human IL-10mono to the C-terminal end of constant domains 2 and 3 of human immunoglobulin A (Fca), a natural dimer. Stable dimeric forms of IL-10, like Fca-IL-10, may not only be a better format for improved production, but also a more suitable format for medical applications

    Beta-hexosaminidases along the secretory pathway of nicotiana benthamiana have distinct specificities toward engineered helminth N-glycans on recombinant glycoproteins

    Get PDF
    Secretions of parasitic worms (helminths) contain a wide collection of immunomodulatory glycoproteins with the potential to treat inflammatory disorders, like autoimmune diseases. Yet, the identification of single molecules that can be developed into novel biopharmaceuticals is hampered by the limited availability of native parasite-derived proteins. Recently, pioneering work has shown that helminth glycoproteins can be produced transiently in Nicotiana benthamiana plants while simultaneously mimicking their native helminth N-glycan composition by co-expression of desired glycosyltransferases. However, efficient "helminthization" of N-glycans in plants by glyco-engineering seems to be hampered by the undesired truncation of complex N-glycans by beta-N-acetyl-hexosaminidases, in particular when aiming for the synthesis of N-glycans with antennary GalNAc beta 1-4GlcNAc (LacdiNAc or LDN). In this study, we cloned novel beta-hexosaminidase open reading frames from N. benthamiana and characterized the biochemical activity of these enzymes. We identified HEXO2 and HEXO3 as enzymes responsible for the cleavage of antennary GalNAc residues of N-glycans on the model helminth glycoprotein kappa-5. Furthermore, we reveal that each member of the HEXO family has a distinct specificity for N-glycan substrates, where HEXO2 has strict beta-galactosaminidase activity, whereas HEXO3 cleaves both GlcNAc and GalNAc. The identification of HEXO2 and HEXO3 as major targets for LDN cleavage will enable a targeted genome editing approach to reduce undesired processing of these N-glycans. Effective knockout of these enzymes could allow the production of therapeutically relevant glycoproteins with tailor-made helminth N-glycans in plants.Host-parasite interactio

    The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake

    Get PDF
    Type 2 immunity plays an essential role in the maintenance of metabolic homeostasis and its disruption during obesity promotes meta-inflammation and insulin resistance. Infection with the helminth parasite Schistosoma mansoni and treatment with its soluble egg antigens (SEA) induce a type 2 immune response in metabolic organs and improve insulin sensitivity and glucose tolerance in obese mice, yet, a causal relationship remains unproven. Here, we investigated the effects and underlying mechanisms of the T2 ribonuclease omega-1 (omega 1), one of the major S mansoni immunomodulatory glycoproteins, on metabolic homeostasis. We show that treatment of obese mice with plant-produced recombinant omega 1, harboring similar glycan motifs as present on the native molecule, decreased body fat mass, and improved systemic insulin sensitivity and glucose tolerance in a time- and dose-dependent manner. This effect was associated with an increase in white adipose tissue (WAT) type 2 T helper cells, eosinophils, and alternatively activated macrophages, without affecting type 2 innate lymphoid cells. In contrast to SEA, the metabolic effects of omega 1 were still observed in obese STAT6-deficient mice with impaired type 2 immunity, indicating that its metabolic effects are independent of the type 2 immune response. Instead, we found that omega 1 inhibited food intake, without affecting locomotor activity, WAT thermogenic capacity or whole-body energy expenditure, an effect also occurring in leptin receptor-deficient obese and hyperphagic db/db mice. Altogether, we demonstrate that while the helminth glycoprotein omega 1 can induce type 2 immunity, it improves whole-body metabolic homeostasis in obese mice by inhibiting food intake via a STAT6-independent mechanism.Radiolog

    Plant Biotechnology meets Immunology : plant-based expression of immunologically relevant proteins

    No full text
      The incidence of inflammatory disorders in industrialized countries has dramatically increased over the last decennia, which is believed to result from a change in life-style. Treatment of these inflammatory disorders relies on the intervention in immune responses thereby restoring homeostasis. For now, many inflammatory disorders are treated with broad-acting immunosuppressive drugs or monoclonal antibodies that specifically target pro-inflammatory molecules of the immune system. An alternative therapeutic approach would be to use immunomodulatory proteins that are naturally involved in re-establishing immune homeostasis. This thesis describes the plant-based expression of a variety of immunomodulatory cytokines that may be used as biopharmaceutical proteins in the future. Furthermore, this thesis contains a pioneering chapter on the plant-based expression of immunomodulatory helminth-secreted glycoproteins. In Chapter 2 we describe the plant-based expression of the immune-regulatory cytokine human transforming growth factor β1 (TGF-β1). By co-expressing human furin with latent TGF-β1 we were able to engineer the post-translational proteolytic processing of TGF-β1, which enabled the production of biologically active TGF-β1. In Chapter 3 we reveal that aggregation is a major production bottleneck for the anti-inflammatory cytokine interleukin-10 (IL-10). By protein engineering we were able to prevent aggregation and created a biologically active fusion protein of IL-10. In Chapter 4 we express biologically active IL-22 in plants. We reveal that, in contrast to current literature, its activity is independent of the presence of N-glycans or their composition. This chapter further reveals that plants offer a powerful tool to allow investigation into the role of N-glycans in protein folding and biological activity of glycoproteins. In Chapter 5 we further explore the potential of glyco-engineering in plants by engineering helminth-like N-glycans. We produce large quantities of two major egg antigens from Schistosoma mansoni and successfully engineer Lewis X, LDN and LDNF N-glycan structures. These plant biotechnological research lines are a showcase for the potential of engineering proteins as well as post-translational modifications in plants with special emphasis on N-glycan engineering. Altogether, the results presented in the first four chapters reveal the remarkable flexibility of plants as a production platform for recombinant proteins. It showcases the potential of engineering proteins as well as post-translational modifications in plants, but it especially highlights the engineering of tailor made N-glycans in plants. This, combined with the speed of transient expression by means of agroinfiltration, makes transient expression in Nicotiana benthamiana a powerful tool to study the role of N-glycans on glycoprotein function. In parallel to these plant biotechnological research lines, we also developed an in vitro model system based on mouse bone marrow-derived cells to study immunological responses. We used this model to obtain clues on why IL-10 therapy has not been as successful as previously anticipated. In Chapter 6 we have set-up biological activity assays based on bone marrow-derived cells and reveal that IL-10 activity is dependent on both IL-10R1 and IL-10R2, but not IL-10R2-associated signalling via Tyk2. We also show that interactions between IL-10R1 and IL-10R2 (both intracellular and extracellular) reduce cellular binding of IL-10, but are crucial to initiate IL-10 mediated signalling. Furthermore, we observed that macrophages and dendritic cells respond differently to IL-10. This was further investigated in Chapter 7 where we reveal that GM-CSF (the cytokine used to differentiate dendritic cells) is responsible for negatively regulating early IL-10-mediated responses. Strikingly, GM-CSF does not strongly affect the IL-10-induced activation of the transcription factor STAT3. Instead, GM-CSF induces strong constitutive phosphorylation of GSK-3β, a signalling component downstream of the PI3K/Akt pathway. These immunological chapters give novel insights on the mechanism of initiating IL-10-induced signalling and on the possible integration of signal transduction pathways elicited by different cytokines. Ultimately this knowledge could provide us with new therapeutic strategies to treat inflammatory disorders

    Transient expression of secretory IgA in planta is optimal using a multi-gene vector and may be further enhanced by improving joining chain incorporation

    No full text
    Secretory IgA (sIgA) is a crucial antibody in host defence at mucosal surfaces. It is a promising antibody isotype in a variety of therapeutic settings such as passive vaccination and treatment of inflammatory disorders. However, heterologous production of this heteromultimeric protein complex is still suboptimal. The challenge is the coordinate expression of the four required polypeptides; the alpha heavy chain, the light chain, the joining chain and part of the polymeric-Ig-receptor called the secretory component, in a 4:4:1:1 ratio. We evaluated the transient expression of three sIgAκ variants, harbouring the heavy chain isotype α1, α2m1 or α2m2, of the clinical antibody Ustekinumab in planta. Ustekinumab is directed against the p40 subunit that is shared by the pro-inflammatory cytokines interleukin (IL)-12 and IL-23. A sIgA variant of this antibody may enable localized treatment of inflammatory bowel disease. Of the three different sIgA variants we obtained the highest yield with sIgA1κ reaching up to 373 μg sIgA/ mg total soluble protein. The use of a multi-cassette vector containing all four expression cassettes was most efficient. However, not the expression strategy, but the incorporation of the joining chain turned out to be the limiting step for sIgA production. Our data demonstrate that transient expression in planta is suitable for the economic production of heteromultimeric protein complexes such as sIgA

    The emerging red snapper culture

    Get PDF
    Despite causing considerable damage to host tissue at the onset of parasitism, invasive helminths establish remarkably persistent infections in both animals and plants. Secretions released by these obligate parasites during host invasion are thought to be crucial for their persistence in infection. Helminth secretions are complex mixtures of molecules, most of which have unknown molecular targets and functions in host cells or tissues. Although the habitats of animal- and plant-parasitic helminths are very distinct, their secretions share the presence of a structurally conserved group of proteins called venom allergen-like proteins (VALs). Helminths abundantly secrete VALs during several stages of parasitism while inflicting extensive damage to host tissue. The tight association between the secretion of VALs and the onset of parasitism has triggered a particular interest in this group of proteins, as improved knowledge on their biological functions may assist in designing novel protection strategies against parasites in humans, livestock, and important food crops

    Assessing the immunomodulatory potential of high-molecular-weight extracts from mushrooms; an assay based on THP-1 macrophages

    No full text
    BACKGROUND Food is a potential source of immunomodulating compounds that may be used to steer immune responses towards a desired status such as reducing inflammatory disorders. However, to identify and characterize such bioactive compounds, biologically relevant and standardized assays are required. Macrophages play an important role in immunomodulation and are suited for developing cell-based assays. An assay was developed based on macrophages, in a homogeneous differentiation state, using the human monocytic cell line THP-1 previously used to assess immunomodulatory properties of low-molecular-weight allergens, hormones, dietary supplements and therapeutic drugs. RESULTS Zymosan and mushroom polysaccharide extracts lead to a heterogeneous differentiation state of THP-1 monocytes, and these cells secrete low levels of cytokines upon stimulation. Differentiation into macrophages using a low concentration of phorbol 12-myristate 13-acetate improved responsiveness. Elevated levels of cytokines were secreted by cells in a homogenous differentiation state. In addition, it was determined that the assay performs best when using cells at a concentration of (2.5–5)¿×¿105 cells mL-1. CONCLUSION An assay was developed suitable to distinguish the immunomodulatory properties of food compounds in a reproducible manner. It was evaluated using eight mushroom species by measuring the secretion of relevant cytokines TNF-a, IL-1ß, IL-6 and IL-10. © 2014 Society of Chemical Industr

    Co-expression of the protease furin in Nicotiana benthamiana leads to efficient processing of latent transforming growth factor-b1 into a biologically active protein

    No full text
    Transforming growth factor beta (TGF-β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF-β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF-β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF-β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF-β1 in the absence of the latency-associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP-TGF-β1, we were able to show that processing of the latent complex by a furin-like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP-TGF-β1, and co-expression of human furin enabled the proteolytic processing of latent TGF-β1. Engineering the plant post-translational machinery by co-expressing human furin also enhanced the accumulation of biologically active TGF-β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing.<br/

    Assessing the immunomodulatory potential of high-molecular-weight extracts from mushrooms; an assay based on THP-1 macrophages

    No full text
    BACKGROUND Food is a potential source of immunomodulating compounds that may be used to steer immune responses towards a desired status such as reducing inflammatory disorders. However, to identify and characterize such bioactive compounds, biologically relevant and standardized assays are required. Macrophages play an important role in immunomodulation and are suited for developing cell-based assays. An assay was developed based on macrophages, in a homogeneous differentiation state, using the human monocytic cell line THP-1 previously used to assess immunomodulatory properties of low-molecular-weight allergens, hormones, dietary supplements and therapeutic drugs. RESULTS Zymosan and mushroom polysaccharide extracts lead to a heterogeneous differentiation state of THP-1 monocytes, and these cells secrete low levels of cytokines upon stimulation. Differentiation into macrophages using a low concentration of phorbol 12-myristate 13-acetate improved responsiveness. Elevated levels of cytokines were secreted by cells in a homogenous differentiation state. In addition, it was determined that the assay performs best when using cells at a concentration of (2.5–5)¿×¿105 cells mL-1. CONCLUSION An assay was developed suitable to distinguish the immunomodulatory properties of food compounds in a reproducible manner. It was evaluated using eight mushroom species by measuring the secretion of relevant cytokines TNF-a, IL-1ß, IL-6 and IL-10. © 2014 Society of Chemical Industr
    corecore