727 research outputs found
When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds
Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24-hour day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We find substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24-hour activity cycles, were continuously active (arrhythmic), or showed “free-running” activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions
Nocturnal activity by the primarily diurnal Central American agouti (Dasyprocta punctata) in relation to environmental conditions, resource abundance and predation risk
An animal's fitness is in part based on its ability to manage the inherent risks (foraging costs, predation, exposure to disease) with the benefits (resource gain, access to mates, social interactions) of activity (Abrams 1991, Altizer et al. 2003, Lima & Bednekoff 1999, Rubenstein & Hohmann 1989, Wikelski et al. 2001). Thus, understanding an animal's pattern of activity is key to understanding behavioural and ecological processes. However, while numerous laboratory methodologies are available to continuously quantify activity over long periods of time, logistical difficulties have greatly hindered activity studies of animals in the field (DeCoursey 1990)
Estudio de una escultura con inscripción ibérica procedente del santuario del Cerro de los Santos
La línea de trabajo sobre imagen en la cultura ibérica ha aportado a la arqueología ibérica excelentes resultados, tanto desde el punto de vista de la dinamización teórica de la disciplina, como en su aplicación concreta al estudio y la interpretación de determinados programas iconográficos en sus contextos arqueológicos (OLMOS 1992, 1996; ARANEGUI 1997, entre otros). Uno de los sujetos de investigación de especial relevancia de esta línea ha sido la religiosidad y sus diversas manifestaciones. En este sentido, los exvotos ibéricos labrados en caliza y bronce (RUIZ BREMÓN 1989a; PRADOS1992), sin olvidar aquellos elaborados en terracota, representan un material de estudio privilegiado
Risk-sensitive response of soaring birds to crosswind over dangerous sea highlights age-specific differences in migratory performance.
Challenges imposed by geographical barriers during migration are selective agents for animals. Juvenile soaring landbirds often cross large water bodies along their migratory path, where they lack updraft support and are vulnerable to harsh weather. However, the consequences of inexperience in accomplishing these water crossings remain largely unquantified. To address this knowledge gap, we tracked the movements of juvenile and adult black kites Milvus migrans over the Strait of Gibraltar using high-frequency tracking devices in variable crosswind conditions. We found that juveniles crossed under higher crosswind speeds and at wider sections of the strait compared with adults during easterly winds, which represent a high risk owing to their high speed and steady direction towards the Atlantic Ocean. Juveniles also drifted extensively with easterly winds, contrasting with adults who strongly compensated for lateral displacement through flapping. Age differences were inconspicuous during winds with a west crosswind speed component, as well as for airspeed modulation in all wind conditions. We suggest that the suboptimal sea-crossing behaviour of juvenile black kites may impact their survival rates, either by increasing chances of drowning owing to exhaustion or by depleting critical energy reserves needed to accomplish their first migration
Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs
A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar
locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril,
particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral
olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been
documented only by observing the birds’ vanishing bearings. In the present work we recorded the flight tracks of pigeons with
previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left
nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more
tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey
significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover
site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information
needed for the operation of the navigational map
Reduction of hydraulic losses in a piston pump
The hydraulic losses are the decrease in energy of the fluid due to vortex formation, friction between the fluid and the pipe, changing the flow of fluid. The decrease in energy of the fluid, in turn, leads to the following consequences: decrease efficiency, increase energy consumption and decrease cavitation stock pump. The main danger in a piston pump is to reduce cavitation stock. This leads to boiling of water by pressure reduction and rapid destruction the flow part of the pump
Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth
Each year, trillions of insects make long-range seasonal migrations. These movements are relatively well understood at a population level, but how individual insects achieve them remains elusive. Behavioral responses to conditions en route are little studied, primarily owing to the challenges of tracking individual insects. Using a light aircraft and individual radio tracking, we show that nocturnally migrating death's-head hawkmoths maintain control of their flight trajectories over long distances. The moths did not just fly with favorable tailwinds; during a given night, they also adjusted for head and crosswinds to precisely hold course. This behavior indicates that the moths use a sophisticated internal compass to maintain seasonally beneficial migratory trajectories independent of wind conditions, illuminating how insects traverse long distances to take advantage of seasonal resources
Genetic Impact of a Severe El Niño Event on Galápagos Marine Iguanas (Amblyrhynchus cristatus)
The El Niño-Southern Oscillation (ENSO) is a major source of climatic disturbance, impacting the dynamics of ecosystems worldwide. Recent models predict that human-generated rises in green-house gas levels will cause an increase in the strength and frequency of El Niño warming events in the next several decades, highlighting the need to understand the potential biological consequences of increased ENSO activity. Studies have focused on the ecological and demographic implications of El Niño in a range of organisms, but there have been few systematic attempts to measure the impact of these processes on genetic diversity in populations. Here, we evaluate whether the 1997–1998 El Niño altered the genetic composition of Galápagos marine iguana populations from eleven islands, some of which experienced mortality rates of up to 90% as a result of El Niño warming. Specifically, we measured the temporal variation in microsatellite allele frequencies and mitochondrial DNA diversity (mtDNA) in samples collected before (1991/1993) and after (2004) the El Niño event. Based on microsatellite data, only one island (Marchena) showed signatures of a genetic bottleneck, where the harmonic mean of the effective population size (Ne) was estimated to be less than 50 individuals during the period between samplings. Substantial decreases in mtDNA variation between time points were observed in populations from just two islands (Marchena and Genovesa). Our results suggests that, for the majority of islands, a single, intense El Niño event did not reduce marine iguana populations to the point where substantial neutral genetic diversity was lost. In the case of Marchena, simultaneous changes to both nuclear and mitochondrial DNA variation may also be the result of a volcanic eruption on the island in 1991. Therefore, studies that seek to evaluate the genetic impact of El Niño must also consider the confounding or potentially synergistic effect of other environmental and biological forces shaping populations
Response to Zöller et al.'s critique on “Potential short-term earthquake forecasting by farm-animal monitoring”
Zöller et al. (Ethology, 2020) criticize our original publication (Wikelski et al., Ethology, 126(9), 2020, 931) for obvious reasons: we only observed the behavior of one group of farm animals before, during and after one earthquake series in one area of the world. It is clear that no earthquake predictions are possible, and should not be attempted, from this data set. However, what we show is that there is important information within this animal collective pertaining to potential future local forecasting of earthquakes when combined with traditional data sources. We maintain that combining Zöller et al.'s (2020) modeling tools with the adequate use of our data can stimulate novel ways of earthquake forecasting. Future studies should combine both approaches
- …