179 research outputs found
Value of Mendelian Laws of Segregation in Families: Data Quality Control, Imputation, and Beyond
When analyzing family data, we dream of perfectly informative data, even whole-genome sequences (WGSs) for all family members. Reality intervenes, and we find that next-generation sequencing (NGS) data have errors and are often too expensive or impossible to collect on everyone. The Genetic Analysis Workshop 18 working groups on quality control and dropping WGSs through families using a genome-wide association framework focused on finding, correcting, and using errors within the available sequence and family data, developing methods to infer and analyze missing sequence data among relatives, and testing for linkage and association with simulated blood pressure. We found that single-nucleotide polymorphisms, NGS data, and imputed data are generally concordant but that errors are particularly likely at rare variants, for homozygous genotypes, within regions with repeated sequences or structural variants, and within sequence data imputed from unrelated individuals. Admixture complicated identification of cryptic relatedness, but information from Mendelian transmission improved error detection and provided an estimate of the de novo mutation rate. Computationally, fast rule-based imputation was accurate but could not cover as many loci or subjects as more computationally demanding probability-based methods. Incorporating population-level data into pedigree-based imputation methods improved results. Observed data outperformed imputed data in association testing, but imputed data were also useful. We discuss the strengths and weaknesses of existing methods and suggest possible future directions, such as improving communication between data collectors and data analysts, establishing thresholds for and improving imputation quality, and incorporating error into imputation and analytical models
Approaches to mapping genetically correlated complex traits
Our Markov chain Monte Carlo (MCMC) methods were used in linkage analyses of the Framingham Heart Study data using all available pedigrees. Our goal was to detect and map loci associated with covariate-adjusted traits log triglyceride (lnTG) and high-density lipoprotein cholesterol (HDL) using multipoint LOD score analysis, Bayesian oligogenic linkage analysis and identity-by-descent (IBD) scoring methods. Each method used all marker data for all markers on a chromosome. Bayesian linkage analysis detected a linkage signal on chromosome 7 for lnTG and HDL, corroborating previously published results. However, these results were not replicated in a classical linkage analysis of the data or by using IBD scoring methods. We conclude that Bayesian linkage analysis provides a powerful paradigm for mapping trait loci but interpretation of the Bayesian linkage signals is subjective. In the absence of a LOD score method accommodating genetically complex traits and linkage heterogeneity, validation of these signals remains elusive
Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data
Background: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis.
Methods: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals.
Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only.
Conclusions: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis
Estimating relationships between phenotypes and subjects drawn from admixed families.
Background: Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model.
Results: We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them.
Conclusions: Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it
Comparison of marker types and map assumptions using Markov chain Monte Carlo-based linkage analysis of COGA data
We performed multipoint linkage analysis of the electrophysiological trait ECB21 on chromosome 4 in the full pedigrees provided by the Collaborative Study on the Genetics of Alcoholism (COGA). Three Markov chain Monte Carlo (MCMC)-based approaches were applied to the provided and re-estimated genetic maps and to five different marker panels consisting of microsatellite (STRP) and/or SNP markers at various densities. We found evidence of linkage near the GABRB1 STRP using all methods, maps, and marker panels. Difficulties encountered with SNP panels included convergence problems and demanding computations
Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech
Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech sound disorder with suspected genetic involvement, but the genetic etiology is not yet well understood. Very few known or putative causal genes have been identified to date, e.g., FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it possible to identify infants at genetic risk and motivate the development of effective very early intervention programs. We investigated the genetic etiology of CAS in two large multigenerational families with familial CAS. Complementary genomic methods included Markov chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and exome sequencing with variant filtering. No overlaps in regions with positive evidence of linkage between the two families were found. In one family, linkage analysis detected two chromosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the two founders. Single-point linkage analysis of selected variants identified CDH18 as a primary gene of interest and additionally, MYO10, NIPBL, GLP2R, NCOR1, FLCN, SMCR8, NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family detected five regions with LOD scores approaching the highest values possible in the family. A gene of interest was C4orf21(ZGRF1) on 4q25-q28.2. Evidence for previously described causal copy-number variations and validated or suspected genes was not found. Results are consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders. Future studies will investigate genome variants in these and other families with CAS
Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data
BACKGROUND: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. METHODS: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. RESULTS: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. CONCLUSIONS: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis
TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease
Key Variants via the Alzheimer\u27s Disease Sequencing Project Whole Genome Sequence Data
INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer\u27s disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci.
METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer\u27s Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants.
RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses.
DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS
- …
