21 research outputs found

    Delivering sustained, coordinated and integrated observations of the Southern Ocean for global impact

    Get PDF
    The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths >2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.Fil: Newman, Louise. University of Tasmania; AustraliaFil: Heil, Petra. Australian Antarctic Division; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Trebilco, Rowan. Australian Antarctic Division; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Katsumata, Katsuro. Japan Agency For Marine earth Science And Technology; JapĂłnFil: Constable, Andrew J.. Antarctic Climate And Ecosystems Cooperative Research Centre; Australia. Australian Antarctic Division; AustraliaFil: Wijk, Esmee van. Commonwealth Scientific And Industrial Research Organization; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Assmann, Karen. University Goteborg; SueciaFil: Beja, Joana. British Oceanographic Data Centre; AustraliaFil: Bricher, Phillippa. University of Tasmania; AustraliaFil: Coleman, Richard. University of Tasmania; AustraliaFil: Costa, Daniel. University of California; Estados UnidosFil: Diggs, Steve. University of California; Estados UnidosFil: Farneti, Riccardo. The Abdus Salam; Italia. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Fawcett, Sarah. University of Cape Town; SudĂĄfricaFil: Gille, Sarah. University of California; Estados UnidosFil: Hendry, Katharine R.. University of Bristol; Reino UnidoFil: Henley, Sian F.. University of Edinburgh; Reino UnidoFil: Hofmann, Eileen. Old Dominion University; Estados UnidosFil: Maksym, Ted. University of California; Estados UnidosFil: Mazloff, Matthew. University of California; Estados UnidosFil: Meijers, Andrew J.. British Antartic Survey; Reino UnidoFil: Meredith, Michael. British Antartic Survey; Reino UnidoFil: Moreau, Sebastien. Norwegian Polar Institute; NoruegaFil: Ozsoy, Burcu. Istanbul Teknik Üniversitesi; TurquĂ­aFil: Robertson, Robin. Xiamen University; ChinaFil: Schloss, Irene Ruth. Universidad Nacional de Tierra del Fuego; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Austral de Investigaciones CientĂ­ficas; ArgentinaFil: Schofield, Oscar. State University of New Jersey; Estados UnidosFil: Shi, Jiuxin. Ocean University Of China; ChinaFil: Sikes, Elisabeth L.. State University of New Jersey; Estados UnidosFil: Smith, Inga J.. University of Otago; Nueva Zeland

    Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission

    Argo DAC profile cookbook

    No full text
    This DAC cookbook is to include instructions for the DACs on how to calculate different variables for the Argo profile files. This is especially true for some of the additional sensors that are being added to Argo floats. The extra variables increase the complexity of the profile file and extra instructions may be necessary, depending on float and sensor type. It is separate from other data manuals because users do not need to understand all these details, but that it is important that all DACs to be calculating the variables in the same manner. There are instructions in this cookbook that apply to all floats and some that apply to only certain float types. Look through the table of contents for the specific float types included
    corecore