2 research outputs found

    RME-GAN: A Learning Framework for Radio Map Estimation based on Conditional Generative Adversarial Network

    Full text link
    Outdoor radio map estimation is an important tool for network planning and resource management in modern Internet of Things (IoT) and cellular systems. Radio map describes spatial signal strength distribution and provides network coverage information. A practical goal is to estimate fine-resolution radio maps from sparse radio strength measurements. However, non-uniformly positioned measurements and access obstacles can make it difficult for accurate radio map estimation (RME) and spectrum planning in many outdoor environments. In this work, we develop a two-phase learning framework for radio map estimation by integrating radio propagation model and designing a conditional generative adversarial network (cGAN). We first explore global information to extract the radio propagation patterns. We then focus on the local features to estimate the effect of shadowing on radio maps in order to train and optimize the cGAN. Our experimental results demonstrate the efficacy of the proposed framework for radio map estimation based on generative models from sparse observations in outdoor scenarios

    A Principled Hierarchical Deep Learning Approach to Joint Image Compression and Classification

    Full text link
    Among applications of deep learning (DL) involving low cost sensors, remote image classification involves a physical channel that separates edge sensors and cloud classifiers. Traditional DL models must be divided between an encoder for the sensor and the decoder + classifier at the edge server. An important challenge is to effectively train such distributed models when the connecting channels have limited rate/capacity. Our goal is to optimize DL models such that the encoder latent requires low channel bandwidth while still delivers feature information for high classification accuracy. This work proposes a three-step joint learning strategy to guide encoders to extract features that are compact, discriminative, and amenable to common augmentations/transformations. We optimize latent dimension through an initial screening phase before end-to-end (E2E) training. To obtain an adjustable bit rate via a single pre-deployed encoder, we apply entropy-based quantization and/or manual truncation on the latent representations. Tests show that our proposed method achieves accuracy improvement of up to 1.5% on CIFAR-10 and 3% on CIFAR-100 over conventional E2E cross-entropy training
    corecore