9 research outputs found
Genetic insights into the introduction history of black rats into the eastern Indian Ocean
Islands can be powerful demonstrations of how destructive invasive species can be on endemic faunas and insular ecologies. Oceanic islands in the eastern Indian Ocean have suffered dramatically from the impact of one of the world’s most destructive invasive species, the black rat, causing the loss of endemic terrestrial mammals and ongoing threats to ground-nesting birds. We use molecular genetic methods on both ancient and modern samples to establish the origins and minimum invasion frequencies of black rats on Christmas Island and the Cocos-Keeling Islands. We find that each island group had multiple incursions of black rats from diverse geographic and phylogenetic sources. Furthermore, contemporary black rat populations on these islands are highly admixed to the point of potentially obscuring their geographic sources. These hybridisation events between black rat taxa also pose potential dangers to human populations on the islands from novel disease risks. Threats of ongoing introductions from yet additional geographic sources is highlighted by genetic identifications of black rats found on ships, which provides insight into how recent ship-borne human smuggling activity to Christmas Island can negatively impact its endemic species
Distribution, Density, and Biomass of Introduced Small Mammals in the Southern Mariana Islands.
v. ill. 23 cm.QuarterlyAlthough it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely facilitate and support a high-density Brown Tree Snake population, even as native species are reduced or ext
Potential Causative Mutation for Melanism in Rats Identified in the Agouti Signaling Protein Gene (Asip) of the Rattus rattus Species Complex on Okinawa Island, Japan
The occurrence of black fur, or melanism, in many mammalian species is known to be linked to DNA sequence variation in the agouti signaling protein (Asip) gene, which is a major determinant of eumelanin and pheomelanin pigments in coat color. We investigated 38 agouti (i.e., banded wildtype) and four melanistic Rattus rattus species complex (RrC) lineage II specimens from Okinawa Island, Ryukyu Islands, Japan, for genetic variation in three exons and associated flanking regions in the Asip gene. On Okinawa, a predicted loss-of-function mutation caused by a cysteine to serine amino acid change at p.124C>S (c.370T>A) in the highly conserved functional domain of Asip was found in melanistic rats, but was absent in agouti specimens, suggesting that the p.124C>S mutation is responsible for the observed melanism. Phylogeographic analysis found that Asip sequences from Okinawan RrC lineage II, including both agouti and melanistic specimens, differed from: 1) both agouti and melanistic RrC lineage I from Otaru, Hokkaido, Japan, and 2) agouti RrC lineages I and II from South Australia. This suggests the possibility of in-situ mutation of the Asip gene, either within the RrC lineage II population on Okinawa or in an unsampled RrC lineage II population with biogeographic links to Okinawa, although incomplete lineage sorting could not be ruled out.</p
Expanding population edge craniometrics and genetics provide insights into dispersal of commensal rats through Nusa Tenggara, Indonesia
Published: 25 November 2020 (in print and online simultaneously)The Nusa Tenggara island chain consists of an archipelago that runs roughly east-west in eastern Indonesia. As part of Wallacea, it has never been connected to any continental landmass, and has been subject to a variety of biological invasions that have populated the islands. Here, we examine the craniometric and molecular genetic records of several species of Rattus sensu lato in the island chain. We use the predictions of expanding population edge phenotypic selection in an effort to understand the movement of Rattus rattus and Rattus exulans through the archipelago. We also examine the mitochondrial haplotype networks of R. argentiventer, R. exulans, and the R. rattus Complex (RrC) and microsatellite allele frequency clustering patterns for the RrC, to examine relationships within and between Nusa Tenggara populations, and those of Asia and the Pacific where relevant for each taxon. In the RrC LIV and RrC LII haplotype networks, 20 haplotypes with seven from Nusa Tenggara were observed for RrC LIV, and 100 haplotypes with seven from Nusa Tenggara observed for RrC LII. The top performing RrC craniometric model had a negative association between size and distance from the easternmost point of the samples from Nusa Tenggara, consistent with increasing size moving west to east. The cytochrome b network for the R. exulans sequences comprised 14 haplotypes, with three observed from mainland Southeast Asia, one shared with Nusa Tenggara and regions further east, and another haplotype observed in Nusa Tenggara and in the Pacific. The R. exulans craniometric model selection produced four equally well performing models, with no migration scenario preferred. Finally, the haplotype network of R. argentiventer comprised 10 haplotypes, with six observed in Nusa Tenggara, including a relatively early cluster from the east of the archipelago. Our results are compatible with a polyphasic and polydirectional invasion of Nusa Tenggara by Rattus, likely beginning with RrC from the west to the east, an expansion of R. exulans from Flores, seemingly in no preferred overall direction, and finally the invasion of R. argentiventer from the east to the west. We find some support for the Dong Son drum maritime exchange network contributing to the distribution of the latter species.Julien Louys, Michael B. Herrera, Vicki A. Thomson, Andrew S. Wiewel, Stephen C. Donnellan, Sue O, Connor, and Ken Apli
Quantifying the effects of prior acetyl-salicylic acid on sepsis-related deaths: An individual patient data meta-analysis using propensity matching
Objective: The primary objective was to conduct a meta-analysis on published observational cohort data describing the association between acetyl-salicylic acid (aspirin) use prior to the onset of sepsis and mortality in hospitalized patients. Study Selection: Studies that reported mortality in patients on aspirin with sepsis with a comparison group of patients with sepsis not on prior aspirin therapy were included. Data Sources: Fifteen studies described hospital-based cohorts (n = 17,065), whereas one was a large insurance-based database (n = 683,421). Individual-level patient data were incorporated from all selected studies. Data Extraction: Propensity analyses with 1:1 propensity score matching at the study level were performed, using the most consistently available covariates judged to be associated with aspirin. Meta-analyses were performed to estimate the pooled average treatment effect of aspirin on sepsis-related mortality. Data Synthesis: Use of aspirin was associated with a 7% (95% CI, 2-12%; p = 0.005) reduction in the risk of death as shown by meta-analysis with considerable statistical heterogeneity (I-2 = 61.6%). Conclusions: These results are consistent with effects ranging from a 2% to 12% reduction in mortality risk in patients taking aspirin prior to sepsis onset. This association anticipates results of definitive studies of the use of low-dose aspirin as a strategy for reduction of deaths in patients with sepsi