21 research outputs found

    Facile NMR Relaxation Sensor for Monitoring of Biomass Degradation Products during Conversion to Biogas

    Get PDF
    The chemical and morphological composition of animal biowaste is known to limit the efficiency of methane production by bacterial anaerobic digestion (AD). To better understand these material limitations, we studied degradative changes in cattle manure’s organic complex components chemical and morphological composition during its AD to methane. This was achieved using low field 1H NMR relaxation times domain (TD) spectral mapping combined with T1 (spin-lattice) and T2 (spin-spin) TD of cattle manure biomass (CM) peaks assignment, starting from samples of initial freshly collected CM biomass sample followed by several time points sampling during 21 days cycle of the AD process. A T1-T2 relaxation TD graph giving a stable reproducible pattern of 12 peaks was generated, and assigned to different domains, whose changes during AD could be observed. These 12 peaks were assigned to TDs of crystalline nano-aggregated complexes of different degrees of crystallinity with low porosity and low hydration rate and a morphological group of amorphous domains with increased pore size, density, and higher hydration. In agreement with models of elementary cellulose fibrils, these domains were designated as three layers of cellulose consisting of interior, subsurface, and surface. The most amorphous TD volume showed good correlation with biogas production and could serve as an indicator for digestibility and cellulose conversion to a glucose intermediate during the AD process. This study demonstrated the facile and versatile usage of 2D 1H NMR T1-T2 sensorial technology in studying complex biowaste systems, with the potential for improving CM biomass conversion efficiency into bio-methane

    Influence of Climate on the Tocopherol Content of Shea Butter

    No full text

    Time Domain (TD) Proton NMR Analysis of the Oxidative Safety and Quality of Lipid-Rich Foods

    No full text
    Food safety monitoring is highly important due to the generation of unhealthy components within many food products during harvesting, processing, storage, transportation and cooking. Current technologies for food safety analysis often require sample extraction and the modification of the complex chemical and morphological structures of foods, and are either time consuming, have insufficient component resolution or require costly and complex instrumentation. In addition to the detection of unhealthy chemical toxins and microbes, food safety needs further developments in (a) monitoring the optimal nutritional compositions in many different food categories and (b) minimizing the potential chemical changes of food components into unhealthy products at different stages from food production until digestion. Here, we review an efficient methodology for overcoming the present analytical limitations of monitoring a food’s composition, with an emphasis on oxidized food components, such as polyunsaturated fatty acids, in complex structures, including food emulsions, using compact instruments for simple real-time analysis. An intelligent low-field proton NMR as a time domain (TD) NMR relaxation sensor technology for the monitoring of T2 (spin-spin) and T1 (spin-lattice) energy relaxation times is reviewed to support decision-making by producers, retailers and consumers in regard to food safety and nutritional value during production, shipping, storage and consumption

    Magnetic Resonance and Vibrational Spectroscopy and Imaging in Food Analysis

    No full text
    In the past two decades, there have been remarkable changes in the way we analyze the physical, chemical, and sensory properties of fresh and processed food products, with the progressive replacement of traditional wet analytical methods (destructive, laborious, time-consuming, and requiring the use of hazardous chemicals) with new, fast, non-destructive physical methods where the analysis is performed in a single step, after validation, and without the use of chemical reagents [...
    corecore