24 research outputs found

    Quantification of dynamic contrast-enhanced ultrasound (CEUS) in non-cystic breast lesions using external perfusion software

    Get PDF
    The aim of this present clinical pilot study is the display of typical perfusion results in patients with solid, non-cystic breast lesions. The lesions were characterized using contrast enhanced ultrasound (CEUS) with (i) time intensity curve analyses (TIC) and (ii) parametric color maps. The 24 asymptomatic patients included were genetically tested for having an elevated risk for breast cancer. At a center of early detection of familial ovary and breast cancer, those patients received annual MRI and grey-scale ultrasound. If lesions remained unclear or appeared even suspicious, those patients also received CEUS. CEUS was performed after intravenous application of sulfur hexafluoride microbubbles. Digital DICOM cine loops were continuously stored for one minute in PACS (picture archiving and communication system). Perfusion images and TIC analyses were calculated off-line with external perfusion software (VueBox). The lesion diameter ranged between 7 and 15 mm (mean 11 ± 3 mm). Five hypoechoic irregular lesions were scars, 6 lesions were benign and 12 lesions were highly suspicious for breast cancer with irregular enhancement at the margins and a partial wash out. In those 12 cases, histopathology confirmed breast cancer. All the suspicious lesions were correctly identified visually. For the perfusion analysis only Peak Enhancement (PE) and Area Under the Curve (AUC) added more information for correctly identifying the lesions. Typical for benign lesions is a prolonged contrast agent enhancement with lower PE and prolonged wash out, while scars are characterized typically by a reduced enhancement in the center. No differences (p = 0.428) were found in PE in the center of benign lesions (64.2 ± 28.9 dB), malignant lesions (88.1 ± 93.6 dB) and a scar (40.0 ± 17.0 dB). No significant differences (p = 0.174) were found for PE values at the margin of benign lesions (96.4 ± 144.9 dB), malignant lesions (54.3 ± 86.2 dB) or scar tissue (203.8 ± 218.9 dB). Significant differences (p < 0.001) were found in PE of the surrounding tissue when comparing benign lesions (33.6 ± 25.2 dB) to malignant lesions (15.7 ± 36.3 dB) and scars (277.2 ± 199.9 dB). No differences (p = 0.821) were found in AUC in the center of benign lesions (391.3 ± 213.7), malignant lesions (314.7 ± 643.9) and a scar (213.1 ± 124.5). No differences (p = 0.601) were found in AUC values of the margin of benign lesions (313.3 ± 372.8), malignant lesions (272.6 ± 566.4) or scar tissue (695.0 ± 360.6). Significant differences (p < 0.01) were found in AUC of the surrounding tissue for benign lesions (151.7 ± 127.8), malignant lesions (177.9 ± 1345.6) and scars (1091 ± 693.3). There were no differences in perfusion evaluation for mean transit time (mTT), rise time (RT) and time to peak (TTP) when comparing the center to the margins and the surrounding tissue. The CEUS perfusion parameters PE and AUC allow a very good assessment of the risk of malignant breast lesions and thus a downgrading of BI-RADS 4 lesions. The use of the external perfusion software (VueBox, Bracco, Milan, Italy) did not lead to any further improvement in the diagnosis of suspicious breast lesions and does appears not to have any additional diagnostic value in breast lesions

    Multiparametric Sonographic Imaging of Thyroid Lesions: Chances of B-Mode, Elastography and CEUS in Relation to Preoperative Histopathology

    Get PDF
    Background: The aim was to improve preoperative diagnostics of solid non-cystic thyroid lesions by using new high-performance multiparametric ultrasound examination techniques. Methods: Multiparametric ultrasound consists of B-mode, shear-wave elastography and contrast enhanced ultrasound (CEUS) including Time-Intensity-Curve (TIC) analysis. A bolus of 1–2.4 mL Sulfur Hexafluorid microbubbles was injected for CEUS. Postoperative histopathology was the diagnostic gold standard. Results: 116 patients were included in this study. 102 benign thyroid nodules were diagnosed as well as 20 carcinomas. Suspicious B-mode findings like microcalcifications, a blurry edge and no homogeneous sonomorphological structure were detected in 60, 75 and 80% of all carcinomas but only in 13.7, 36.3 and 46.1% of all benign lesions. The average shear-wave elastography measurements of malignant lesions (4.6 m/s or 69.8 kPa centrally and 4.2 m/s or 60.1 kPa marginally) exceed the values of benign nodules. Suspicious CEUS findings like a not-homogeneous wash-in and a wash-out were detected almost twice as often in carcinomas. Conclusion: Multiparametric ultrasound offers new possibilities for the preoperative distinction between benign and malignant thyroid nodules. A score based system of B-mode, shear-wave and CEUS malignancy criteria shows promising results in the detection of thyroid carcinomas. It reaches a sensitivity of 95% and specificity of 75.49%

    Long-term survival after percutaneous irreversible electroporation of inoperable colorectal liver metastases

    Get PDF
    Background: For colorectal liver metastases (CRLM) that are not amenable to surgery or thermal ablation, irreversible electroporation (IRE) is a novel local treatment modality and additional option. Methods: This study is a retrospective long-term follow-up of patients with CRLM who underwent IRE as salvage treatment. Results: Of the 24 included patients, 18(75.0%) were male, and the median age was 57 (range: 28-75) years. The mean time elapsed from diagnosis to IRE was 37.9 +/- 37.3 months. Mean overall survival was 26.5 months after IRE (range: 2.5-69.2 months) and 58.1 months after diagnosis (range: 14.8-180.1 months). One-, three-, and five-year survival rates after initial diagnosis were 100.0%, 79.2%, and 41.2%; after IRE, the respective survival rates were 79.1%, 25.0%, and 8.3%. There were no statistically significant differences detected in survival after IRE with respect to gender, age, T- or N-stage at the time of diagnosis, size of metastases subject to IRE, number of hepatic lesions, or time elapsed between IRE and diagnosis. Conclusion: For nonresectable CRLM, long-term survival data emphasize the value of IRE as a new minimally invasive local therapeutic approach in multimodal palliative treatment, which is currently limited to systemic or regional therapies in this setting

    Color coded perfusion imaging with contrast enhanced ultrasound (CEUS) for post-interventional success control following trans-arterial chemoembolization (TACE) of hepatocellular carcinoma

    Get PDF
    Aim Evaluation of an external color coded perfusion quantification software with CEUS for the post-interventional success control following TACE in patients with HCC. Material and methods 31 patients (5 females, 26 males, age range 34-82 years, mean 66.8 years) with 59 HCC lesions underwent superselective TACE using DSM Beads between 01/2015 and 06/2018. All patients underwent CEUS by an experienced examiner using a convex multifrequency probe (1-6 MHz) within 24 hours following TACE to detect residual tumor tissue. Retrospective evaluation using a perfusion quantification software regarding pE, TTP, mTT, Ri and WiAUC in the center of the lesion, the margin and surrounding liver. Results In all lesions, a post-interventional visual reduction of the tumor microvascularization was observed. Significant differences between center of the lesion vs. margin and surrounding liver were found regarding peak enhancement (867.8 +/- 2416 center vs 2028 +/- 3954 margin p< 0.005) and center 867.8 +/- 2416 vs 2824 +/- 4290 surrounding liver, p<0.0001)). However, no significant differences were found concerning Ri, WiAuC, mTT and TTP. Conclusion CEUS with color-coded perfusion imaging is a valuable supporting tool for post-interventional success control following TACE of liver lesions. Peak enhancement seems to be the most valuable parameter

    Necessity of Immediate MRI Imaging in the Acute Care of Severely Injured Patients

    Get PDF
    Background and Objectives: The standard diagnostic procedure for a patient with a suspected polytrauma injury is computed tomography (CT). In individual cases, however, extended acute imaging using magnetic resonance imaging (MRI) can provide valuable and therapy-relevant information. The aim of our cohort study was to find such cases and to describe their characteristics in order to be able to give possible recommendations for MRI application in acute trauma situations. Materials and Methods: In the study period from 2015–2019, an evaluation of the imaging performed on polytrauma patients was carried out. The specific diagnostic and therapeutic criteria of the MRI group were further defined. Results: In total, 580 patients with an ISS ≄16 (injury severity score) were included in the study. Of these 580 patients, 568 patients received a CT scan and 12 patients an MRI scan as part of the initial diagnostic. Altogether, 66.67% of the MRIs took place outside of regular service hours. The main findings for MRI indications were neurological abnormalities with a focus on myelon injuries. Further MRI examinations were performed to rule out vascular injuries. All in all, 58.3% of the MRIs performed resulted in modified therapeutic strategies afterward. Conclusions: MRI in the context of acute diagnostic of a severely injured patient will likely remain reserved for special indications in the future. However, maximum care hospitals with a high flow of severely injured patients should provide 24/7 MR imaging to ensure the best possible care, especially in neurological and blunt vascular injuries

    Limited capability of MRI radiomics to predict primary tumor histology of brain metastases in external validation

    Get PDF
    Background Growing research demonstrates the ability to predict histology or genetic information of various malignancies using radiomic features extracted from imaging data. This study aimed to investigate MRI-based radiomics in predicting the primary tumor of brain metastases through internal and external validation, using oversampling techniques to address the class imbalance. Methods This IRB-approved retrospective multicenter study included brain metastases from lung cancer, melanoma, breast cancer, colorectal cancer, and a combined heterogenous group of other primary entities (5-class classification). Local data were acquired between 2003 and 2021 from 231 patients (545 metastases). External validation was performed with 82 patients (280 metastases) and 258 patients (809 metastases) from the publicly available Stanford BrainMetShare and the University of California San Francisco Brain Metastases Stereotactic Radiosurgery datasets, respectively. Preprocessing included brain extraction, bias correction, coregistration, intensity normalization, and semi-manual binary tumor segmentation. Two-thousand five hundred and twenty-eight radiomic features were extracted from T1w (± contrast), fluid-attenuated inversion recovery (FLAIR), and wavelet transforms for each sequence (8 decompositions). Random forest classifiers were trained with selected features on original and oversampled data (5-fold cross-validation) and evaluated on internal/external holdout test sets using accuracy, precision, recall, F1 score, and area under the receiver-operating characteristic curve (AUC). Results Oversampling did not improve the overall unsatisfactory performance on the internal and external test sets. Incorrect data partitioning (oversampling before train/validation/test split) leads to a massive overestimation of model performance. Conclusions Radiomics models’ capability to predict histologic or genomic data from imaging should be critically assessed; external validation is essential

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Contrast-enhanced ultrasound (CEUS) and perfusion imaging using VueBoxÂź

    No full text
    The external perfusion software (VueBox (TM)) for contrast-enhanced ultrasound (CEUS), enables the quantitative analysis of micro-vascularization within non-cystic lesions in terms of characterization and detection. This review summarizes our work about parathyroid gland, thyroid gland, liver, prostate and other tissues as well as original studies in the use of parametric perfusion imaging. Useful perfusion parameters are introduced

    Continuous Dynamic Registration of Microvascularization of Liver Tumors with Contrast-Enhanced Ultrasound

    Get PDF
    Aim. To evaluate the diagnostic value of quantification of liver tumor microvascularization using contrast-enhanced ultrasound (CEUS) measured continuously from the arterial phase to the late phase (3 minutes). Material and Methods. We present a retrospective analysis of 20 patients with malignant (n=13) or benign (n=7) liver tumors. The tumors had histopathologically been proven or clearly identified using contrast-enhanced reference imaging with either 1.5 T MRI (liver specific contrast medium) or triphase CT and follow-up. CEUS was performed using a multifrequency transducer (1–5 MHz) and a bolus injection of 2.4 mL sulphur hexafluoride microbubbles. A retrospective perfusion analysis was performed to determine TTP (time-to-peak), RBV (regional blood volume), RBF (regional blood flow), and Peak. Results. Statistics revealed a significant difference (P<0.05) between benign and malignant tumors in the RBV, RBF, and Peak but not in TTP (P=0.07). Receiver operating curves (ROC) were generated for RBV, RBF, Peak, and TTP with estimated ROC areas of 0.97, 0.96, 0.98, and 0.76, respectively. Conclusion. RBV, RBF, and Peak continuously measured over a determined time period of 3 minutes could be of valuable support in differentiating malignant from benign liver tumors

    Percutaneous Treatment of Malignant Liver Lesions: Evaluation of Success Using Contrast- Enhanced Ultrasound (CEUS) and Perfusion Software

    No full text
    Aim Using new perfusion software for evaluation of the success of percutaneous treatments of malignant liver tumors with CEUS. Materials and Methods Retrospective analysis of 88 patients (74 male, 14 female; 30 - 84 years) with 165 malignant liver lesions. The lesions were 57 metastases and 108 HCCs. The success of interventional treatment (IRE n = 47; RFA n = 38; MWA n = 44; TACE n = 36) was evaluated by CEUS and perfusion software (VueBox (R)). CEUS was performed after injection of 1 - 2.4ml of sulfur hexafluoride microbubbles (SonoVue (R)) using a 1-5MHz convex probe. DICOM loops up to 1 min. in the ablation area were stored digitally in the PACS. Regions of interest (ROI) were manually placed in the center, the margins of the lesions as well as in the surrounding tissue. Using VueBox (R) peak, time to peak (TTP), mean transit time (mTT), rise time (RT), the wash-in and wash-out rate were calculated for the regions, in order to evaluate the success of the percutaneous treatment after the ablation in comparison to the ceCT/ceMRI up to 6 months after the treatment. Results There were significant differences in all cases between the center compared to the margins for the main perfusion parameters (peak, mTT, RT) (p < 0.001). Peak, wash-in and wash-out ratios were further analyzed with the type of lesion and the method of ablation. All parameters were significantly different between lesions treated successfully vs. lesions with recurrence. Conclusion A combination of CEUS with perfusion imaging enables critical assessment of successful treatment after percutaneous interventional procedures for a malignant liver lesion
    corecore