193 research outputs found

    Evaluation of a new method to determine the water addition level in gluten-free bread systems

    Get PDF
    The water content in gluten-free recipes plays an essential role in the resulting product quality. Up to date the water adjustment is conducted mainly by trial-and-error. Brabender GmbH & Co. KG developed an attachment for the Farinograph, which makes the measurement of batter consistencies feasible. The water content was adjusted using this new tool and compared to the water determined based on the water hydration capacity (WHC) of the single bulking ingredients. Furthermore, bread quality characteristics were analysed. Five different hydrocolloids were tested in a gluten-free system based on rice flour. Water levels differed significantly, when guar gum (20% water) or sodium alginate (18% water) were incorporated. The use of Farinograph resulted generally in a higher specific volume (+0.63 ml/g) and a softer crumb (−16 N). On the contrary, the WHC-method only gave an indication about the water addition but did not consider temperature changes during mixing and its effect on the hydration. In conclusion, Farinograph can be considered as a useful tool for the determination of the optimal water content, and additionally provides useful information about batter stability and dough development time

    Polyethylene imine-based receptor immobilization for label free bioassays

    Get PDF
    Polyethylene imine (PEI) based immobilization of antibodies is described and the concept is proved on the label free assay of C-Reactive Protein (CRP). This novel immobilization method is composed of a hyperbranched PEI layer which was deposited at a high pH (9.5) on the sensor surface. The free amino groups of PEI were derivatized with neutravidin by Biotin N-hydroxysuccinimide ester and the biotinylated anti-CRP antibody immobilized on this layer. Direct binding assay of recombinant CRP was successfully performed in the low μg/ml concentrations using a label free optical waveguide biosensor

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor receptor, AMFR) and CHIP E3 ligases

    Get PDF
    Human liver CYP3A4 is an endoplasmic reticulum (ER)-anchored hemoprotein responsible for the metabolism of >50% of clinically prescribed drugs. After heterologous expression in Saccharomyces cerevisiae,it is degraded via the ubiquitin (Ub)-dependent 26S proteasomal pathway that utilizes Ubc7p/Cue1p, but none of the canonical Ub-ligases (E3s) Hrd1p/Hrd3p, Doa10p, and Rsp5p involved in ER-associated degradation (ERAD). To identify an Ub-ligase capable of ubiquitinating CYP3A4, we examined various in vitro reconstituted mammalian E3 systems, using purified and functionally characterized recombinant components. Of these, the cytosolic domain of the ER-protein gp78, also known as the tumor autocrine motility factor receptor (AMFR), an UBC7-dependent polytopic RING-finger E3, effectively ubiquitinated CYP3A4 in vitro, as did the UbcH5a-dependent cytosolic E3 CHIP. CYP3A4 immunoprecipitation coupled with anti-Ub immunoblotting analyses confirmed its ubiquitination in these reconstituted systems. Thus, both UBC7/gp78 and UbcH5a/CHIP may be involved in CYP3A4 ERAD, although their relative physiological contribution remains to be established

    Cytokines and chemokines involved in acute retinal necrosis

    Get PDF
    PURPOSE. To investigate which cytokines and chemokines are involved in the immunopatho-genesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. METHODS. Serum and aqueous humor (AH) samples of 19 patients with ARN were analyzed by multiplex immunoassay. Infectious controls consisted of 18 patients with rubella virus– associated Fuchs’ uveitis and 20 patients with ocular toxoplasmosis all confirmed by intraocular fluid analyses. The control group consisted of seven paired AH and serum samples from seven noninflammatory control patients with age-related cataract. In each sample, 4 anti-inflammatory, 12 proinflammatory, 2 vascular, and 4 other immune mediators were measured. In addition, various clinical characteristics were assessed. RESULTS. In ARN, 10 of the 22 mediators, including most proinflammatory and vascular mediators such as IL-6, IL-8, IL-18, MIF, MCP-1, Eotaxin, IP-10, IL-15, sICAM-1, and sVCAM-1, were significantly elevated when compared to all controls. In addition, one anti-inflammatory mediator (IL-10) was significantly elevated in ARN as compared to the controls. No association was found between the time of sampling and the extent and leve

    BAT3 Guides Misfolded Glycoproteins Out of the Endoplasmic Reticulum

    Get PDF
    Secretory and membrane proteins that fail to acquire their native conformation within the lumen of the Endoplasmic Reticulum (ER) are usually targeted for ubiquitin-dependent degradation by the proteasome. How partially folded polypeptides are kept from aggregation once ejected from the ER into the cytosol is not known. We show that BAT3, a cytosolic chaperone, is recruited to the site of dislocation through its interaction with Derlin2. Furthermore, we observe cytoplasmic BAT3 in a complex with a polypeptide that originates in the ER as a glycoprotein, an interaction that depends on the cytosolic disposition of both, visualized even in the absence of proteasomal inhibition. Cells depleted of BAT3 fail to degrade an established dislocation substrate. We thus implicate a cytosolic chaperone as an active participant in the dislocation of ER glycoproteins.United States. National Institutes of HealthBoehringer Ingelheim Fond

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Exploitation of Herpesvirus Immune Evasion Strategies to Modify the Immunogenicity of Human Mesenchymal Stem Cell Transplants

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Human Cytomegalovirus Impairs the Function of Plasmacytoid Dendritic Cells in Lymphoid Organs

    Get PDF
    Human dendritic cells (DCs) are the main antigen presenting cells (APC) and can be divided into two main populations, myeloid and plasmacytoid DCs (pDCs), the latter being the main producers of Type I Interferon. The vast majority of pDCs can be found in lymphoid organs, where the main pool of all immune cells is located, but a minority of pDCs also circulate in peripheral blood. Human cytomegalovirus (HCMV) employs multiple mechanisms to evade the immune system. In this study, we could show that pDCs obtained from lymphoid organs (tonsils) (tpDCs) and from blood (bpDCs) are different subpopulations in humans. Interestingly, these populations react in opposite manner to HCMV-infection. TpDCs were fully permissive for HCMV. Their IFN-α production and the expression of costimulatory and adhesion molecules were altered after infection. In contrast, in bpDCs HCMV replication was abrogated and the cells were activated with increased IFN-α production and upregulation of MHC class I, costimulatory, and adhesion molecules. HCMV-infection of both, tpDCs and bpDCs, led to a decreased T cell stimulation, probably mediated through a soluble factor produced by HCMV-infected pDCs. We propose that the HCMV-mediated impairment of tpDCs is a newly discovered mechanism selectively targeting the host's major population of pDCs residing in lymphoid organs
    • …
    corecore