59 research outputs found

    Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model

    Get PDF
    BACKGROUND: The effects of the murine monoclonal anti-PcrV antibody Mab166 on acute lung injury induced by Pseudomonas aeruginosa were analyzed in a rat model. METHODS: Lung injury was induced by the instillation of P. aeruginosa strain PA103 directly into the left lungs of anesthetized rats. One hour after the bacterial instillation, rabbit polyclonal anti-PcrV IgG, murine monoclonal anti-PcrV IgG Mab166 or Mab166 Fab-fragments were administered intratracheally directly into the lungs. The degree of alveolar epithelial injury, amount of lung edema, decrease in oxygenation and extent of lung inflammation by histology were evaluated as independent parameters of acute lung injury. RESULTS: These parameters improved in rats that had received intratracheal instillation of either rabbit polyclonal anti-PcrV IgG, murine monoclonal anti-PcrV IgG Mab166 or Mab166 Fab-fragments in comparison with the control group. CONCLUSION: Mab166 and its Fab fragments have potential as adjuvant therapy for acute lung injury due to P. aeruginosa pneumonia

    Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome

    Get PDF
    Background: Despite advances in supportive care, moderate-severe acute respiratory distress syndrome (ARDS) is associated with high mortality rates, and novel therapies to treat this condition are needed. Compelling pre-clinical data from mouse, rat, sheep and ex vivo perfused human lung models support the use of human mesenchymal stem (stromal) cells (MSCs) as a novel intravenous therapy for the early treatment of ARDS. Methods: This article describes the study design and challenges encountered during the implementation and phase 1 component of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of bone marrow-derived human MSCs for moderate-severe ARDS. A trial enrolling 69 subjects is planned (9 subjects in phase 1, 60 subjects in phase 2 treated with MSCs or placebo in a 2:1 ratio). Results: This report describes study design features that are unique to a phase 1 trial in critically ill subjects and the specific challenges of implementation of a cell-based therapy trial in the ICU. Conclusions: Experience gained during the design and implementation of the START study will be useful to investigators planning future phase 1 clinical trials based in the ICU, as well as trials of cell-based therapy for other acute illnesses. Trial registration Clinical Trials Registration: NCT01775774 and NCT02097641

    V-Antigen Genotype and Phenotype Analyses of Clinical Isolates of Pseudomonas aeruginosa

    No full text
    The pcrV genotype was analyzed in clinical isolates of Pseudomonas aeruginosa which showed a negative phenotype for secretion of V-antigen PcrV. The suppression of PcrV secretion in these isolates was due not to a lack of the pcrV gene but rather to suppression of PcrV expression

    Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: A review

    Get PDF
    © Sawa et al.Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional

    Remote Surveillance Technologies: Realizing the Aim of Right Patient, Right Data, Right Time.

    No full text
    The convergence of multiple recent developments in health care information technology and monitoring devices has made possible the creation of remote patient surveillance systems that increase the timeliness and quality of patient care. More convenient, less invasive monitoring devices, including patches, wearables, and biosensors, now allow for continuous physiological data to be gleaned from patients in a variety of care settings across the perioperative experience. These data can be bound into a single data repository, creating so-called data lakes. The high volume and diversity of data in these repositories must be processed into standard formats that can be queried in real time. These data can then be used by sophisticated prediction algorithms currently under development, enabling the early recognition of patterns of clinical deterioration otherwise undetectable to humans. Improved predictions can reduce alarm fatigue. In addition, data are now automatically queriable on a real-time basis such that they can be fed back to clinicians in a time frame that allows for meaningful intervention. These advancements are key components of successful remote surveillance systems. Anesthesiologists have the opportunity to be at the forefront of remote surveillance in the care they provide in the operating room, postanesthesia care unit, and intensive care unit, while also expanding their scope to include high-risk preoperative and postoperative patients on the general care wards. These systems hold the promise of enabling anesthesiologists to detect and intervene upon changes in the clinical status of the patient before adverse events have occurred. Importantly, however, significant barriers still exist to the effective deployment of these technologies and their study in impacting patient outcomes. Studies demonstrating the impact of remote surveillance on patient outcomes are limited. Critical to the impact of the technology are strategies of implementation, including who should receive and respond to alerts and how they should respond. Moreover, the lack of cost-effectiveness data and the uncertainty of whether clinical activities surrounding these technologies will be financially reimbursed remain significant challenges to future scale and sustainability. This narrative review will discuss the evolving technical components of remote surveillance systems, the clinical use cases relevant to the anesthesiologist's practice, the existing evidence for their impact on patients, the barriers that exist to their effective implementation and study, and important considerations regarding sustainability and cost-effectiveness

    Surfactant Proteins A and D Enhance Pulmonary Clearance of Pseudomonas aeruginosa

    No full text
    Surfactant protein (SP)-A and SP-D, members of the collectin family, are involved in innate host defenses against various bacterial and viral pathogens. In this study, we asked whether SP-A and SP-D enhance clearance of a nonmucoid strain of Pseudomonas aeruginosa from the lungs. We infected mice deficient in SP-A (SP-A−/−), SP-D (SP-D−/−) and both pulmonary collectins (SP-AD−/−) by intratracheal administration of P. aeruginosa. Six hours after infection, bacterial counts were significantly higher in SP-A−/−, SP-D−/−, and SP-AD−/− compared with wild-type (WT) mice. Forty-eight hours after infection, bacterial counts were significantly higher in SP-A−/− mice compared with WT mice and in SP-AD−/− mice compared with WT, SP-A−/−, and SP-D−/− mice. Phagocytosis of the bacteria by alveolar macrophages was decreased in SP-A−/− and SP-D−/− mice. Levels of macrophage inflammatory peptide–2 and IL-6 were more elevated in the lungs of SP-D and SP-AD−/− mice compared with WT mice. There was more infiltration by neutrophils in the lungs of SP-D−/− compared with WT and SP-A−/− mice 48 h after infection. This study shows that SP-A and SP-D enhance pulmonary clearance of P. aeruginosa by stimulating phagocytosis by alveolar macrophages and by modulating the inflammatory response in the lungs. These findings also show that the functions of SP-A and SP-D are not completely redundant in vivo
    corecore