5,624 research outputs found
On Morals, Markets, and Climate Change: Exploring Pope Francis’ Challenge
The relation between Culture and Business has caught researchers’ attention long ago; itis not hard to find studies relating to these topics. According to Hofstede et al. (2010, p.18), Hampden-Turner and Trompenaars (2012, p. 8), and Erez and Gati (2004, p. 5),culture can be defined in many levels, for example, organizational culture, and national culture. The field of Business also contains several disciplines, for example, International Business Management, Project Management, and Project Governance. However, not somany studies can be found studying the relation between National Culture and Project Governance; therefore, this study is focused on this relation.This study is designed following a qualitative approach in order to clarify the relation between National Culture and Project Governance Principles. Case studies are used targeting the IT industry of three countries, Spain, Sweden, and Taiwan. These cases also contain the classical theory of cultural dimensions from Hofstede. Hofstede’s dimensionsare Power Distance (PDI), Individualism vs. Collectivism (IDV), Uncertainty Avoidance(UAI), Masculinity vs. Femininity (MAS), Long-term Orientation (LTO), and Indulgencevs. Restraint (IDU). They are applied in this study for distinguishing the differences between countries. This study is also based on the definition of Project GovernancePrinciples from Garland (2009), Klakegg (2008), and Müller et al. (2013). ProjectGovernance Principles are split into two categories as well, hard/ structural principles andsoft/ behaviour principles.In order to clarify the link between National Culture and Project Governance Principles,this thesis’ authors interviewed 19 people, including 10 project managers and 9 experts.All of them have a long experience dealing with Project Management in the three selected countries. Their answers are based on the knowledge and experience of Project Management and Project Governance, as well as their opinions about their own national culture. After analysing the interviews, the authors consider that differences between these three countries in Project Governance and Project Governance Principles do exist. On the other hand, there are also some similar parts, for example, the influence ofcustomers’ orientation and preference. Moreover, respondents, Project Managers and Experts, all mentioned it is also necessary to be aware of the globalized environment, inother words, there is no influence of a single national culture in one country anymore.However, they all admit the importance of their own national culture as well. All these findings from this study encourage further and deeper study in the future
Invariant submanifold for series arrays of Josephson junctions
We study the nonlinear dynamics of series arrays of Josephson junctions in
the large-N limit, where N is the number of junctions in the array. The
junctions are assumed to be identical, overdamped, driven by a constant bias
current and globally coupled through a common load. Previous simulations of
such arrays revealed that their dynamics are remarkably simple, hinting at the
presence of some hidden symmetry or other structure. These observations were
later explained by the discovery of (N - 3) constants of motion, each choice of
which confines the resulting flow in phase space to a low-dimensional invariant
manifold. Here we show that the dimensionality can be reduced further by
restricting attention to a special family of states recently identified by Ott
and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an
invariant submanifold of dimension one less than that found earlier. We derive
and analyze the flow on this submanifold for two special cases: an array with
purely resistive loading and another with resistive-inductive-capacitive
loading. Our results recover (and in some instances improve) earlier findings
based on linearization arguments.Comment: 10 pages, 6 figure
Gaze Behaviour during Space Perception and Spatial Decision Making
A series of four experiments investigating gaze behavior and decision making in the context of wayfinding is reported. Participants were presented with screen-shots of choice points taken in large virtual environments. Each screen-shot depicted alternative path options. In Experiment 1, participants had to decide between them in order to find an object hidden in the environment. In Experiment 2, participants were first informed about which path option to take as if following a guided route. Subsequently they were presented with the same images in random order and had to indicate which path option they chose during initial exposure. In Experiment 1, we demonstrate (1) that participants have a tendency to choose the path option that featured the longer line of sight, and (2) a robust gaze bias towards the eventually chosen path option. In Experiment 2, systematic differences in gaze behavior towards the alternative path options between encoding and decoding were observed. Based on data from Experiments 1 & 2 and two control experiments ensuring that fixation patterns were specific to the spatial tasks, we develop a tentative model of gaze behavior during wayfinding decision making suggesting that particular attention was paid to image areas depicting changes in the local geometry of the environments such as corners, openings, and occlusions. Together, the results suggest that gaze during a wayfinding tasks is directed toward, and can be predicted by, a subset of environmental features and that gaze bias effects are a general phenomenon of visual decision making
Reclaiming human machine nature
Extending and modifying his domain of life by artifact production is one of
the main characteristics of humankind. From the first hominid, who used a wood
stick or a stone for extending his upper limbs and augmenting his gesture
strength, to current systems engineers who used technologies for augmenting
human cognition, perception and action, extending human body capabilities
remains a big issue. From more than fifty years cybernetics, computer and
cognitive sciences have imposed only one reductionist model of human machine
systems: cognitive systems. Inspired by philosophy, behaviorist psychology and
the information treatment metaphor, the cognitive system paradigm requires a
function view and a functional analysis in human systems design process.
According that design approach, human have been reduced to his metaphysical and
functional properties in a new dualism. Human body requirements have been left
to physical ergonomics or "physiology". With multidisciplinary convergence, the
issues of "human-machine" systems and "human artifacts" evolve. The loss of
biological and social boundaries between human organisms and interactive and
informational physical artifact questions the current engineering methods and
ergonomic design of cognitive systems. New developpment of human machine
systems for intensive care, human space activities or bio-engineering sytems
requires grounding human systems design on a renewed epistemological framework
for future human systems model and evidence based "bio-engineering". In that
context, reclaiming human factors, augmented human and human machine nature is
a necessityComment: Published in HCI International 2014, Heraklion : Greece (2014
Coupling of Ca2+ and Substrate Binding in the Outer Membrane Transporter BtuB
Aprovat per la Gerència del Consorci el 22-12-201
Passive listening to preferred motor tempo modulates corticospinal excitability
Rhythms are an essential characteristic of our lives and auditory-motor coupling affects a variety of behaviors. Previous research has shown that neural regions associated with motor system processing are coupled to perceptual rhythmic processing, such that the perception of rhythmic stimuli can entrain motor responses. However, the degree to which individual preference modulates the motor system is unknown. Recent work has shown that passively listening to metrically strong rhythms increases corticospinal excitability, as indicated by transcranial magnetic stimulation (TMS). Furthermore, neuroimaging evidence suggests that premotor activity increases while listening to tempos occurring within a preferred tempo category. Preferred tempo (PT) refers to the rate of a hypothetical endogenous oscillator that may be indicated by spontaneous motor tempo (SMT) and preferred perceptual tempo (PPT) measurements. The present study investigated whether listening to a rhythm at an individual's PT preferentially modulates motor excitability. SMT was obtained in human participants through a tapping task, in which subjects were asked to tap a response key at their most comfortable rate. Subjects listened to tone sequences at 11 log-spaced tempos and rated their preference for each (PPT). SMT and PPT measurements were correlated, indicating that preferred and produced tempos occurred at a similar rate. Crucially, single-pulse TMS delivered to left M1 during PPT judgments revealed that corticospinal excitability, measured by motor-evoked potentials, was modulated by tempos traveling closer to individual PT. However, the specific nature of this modulation differed across individuals, with some exhibiting an increase in excitability around PT and others exhibiting a decrease. These findings suggest that auditory-motor coupling induced by rhythms is preferentially modulated by rhythms occurring at a preferred rate, and that individual differences can alter the nature of this coupling
Cross-Modal Health State Estimation
Individuals create and consume more diverse data about themselves today than
any time in history. Sources of this data include wearable devices, images,
social media, geospatial information and more. A tremendous opportunity rests
within cross-modal data analysis that leverages existing domain knowledge
methods to understand and guide human health. Especially in chronic diseases,
current medical practice uses a combination of sparse hospital based biological
metrics (blood tests, expensive imaging, etc.) to understand the evolving
health status of an individual. Future health systems must integrate data
created at the individual level to better understand health status perpetually,
especially in a cybernetic framework. In this work we fuse multiple user
created and open source data streams along with established biomedical domain
knowledge to give two types of quantitative state estimates of cardiovascular
health. First, we use wearable devices to calculate cardiorespiratory fitness
(CRF), a known quantitative leading predictor of heart disease which is not
routinely collected in clinical settings. Second, we estimate inherent genetic
traits, living environmental risks, circadian rhythm, and biological metrics
from a diverse dataset. Our experimental results on 24 subjects demonstrate how
multi-modal data can provide personalized health insight. Understanding the
dynamic nature of health status will pave the way for better health based
recommendation engines, better clinical decision making and positive lifestyle
changes.Comment: Accepted to ACM Multimedia 2018 Conference - Brave New Ideas, Seoul,
Korea, ACM ISBN 978-1-4503-5665-7/18/1
- …