6 research outputs found

    The carp immune system and immune responses to pathogens

    No full text
    The immune system is critical for survival and fitness of any organism, protecting them from infectious agents, toxins (sterile), tissue damage and the impairment that they elicit (Magnadottir 2006, Segner et al. 2011, Uribe et al. 2011). Such protection is based on immune responses against a given threat. The first response launched can be summarized as innate immunity, the earliest barrier to infection and damage. Innate immunity’s outcome is based on a general recognition of a group of pathogens or damage signals, rather than on a particular microorganism or molecule and does not comprise long lasting immunity (Medzhitov and Janeway Jr. 2000, Magnadottir 2006). The second response comprises more specific reactions and is collectively called adaptive (or acquired) immunity. The adaptive immune response is developed during the lifetime of an organism as adaptations to infection with any given pathogen; its protection is mediated by B- and T-lymphocytes (Fig. 8.1B) and in many cases leads to immunological memory, conferring long-lasting protection against the specific pathogens that the immune system has been exposed to (Uribe et al. 2011).</p

    Adherent intestinal cells from Atlantic salmon show phagocytic ability and express macrophage-specific genes

    No full text
    Our knowledge of the intestinal immune system of fish is rather limited compared to mammals. Very little is known about the immune cells including the phagocytic cells in fish intestine. Hence, employing imaging flow cytometry and RNA sequencing, we studied adherent cells isolated from healthy Atlantic salmon. Phagocytic activity and selected gene expression of adherent cells from the distal intestine (adherent intestinal cells, or AIC) were compared with those from head kidney (adherent kidney cells, or AKC). Phagocytic activity of the two cell types was assessed based on the uptake of Escherichia coli BioParticlesTM. AIC showed phagocytic ability but the phagocytes were of different morphology compared to AKC. Transcriptomic analysis revealed that AIC expressed genes associated with macrophages, T cells, and endothelial cells. Heatmap analysis of selected genes indicated that the adherent cells from the two organs had apparently higher expression of macrophage-related genes. We believe that the adherent intestinal cells have phagocytic characteristics and high expression of genes commonly associated with macrophages. We envisage the possibilities for future studies on enriched populations of adherent intestinal cells

    Lymphoid tissue in teleost gills: Variations on a theme

    Get PDF
    International audienceIn bony fish, the gill filaments are essential for gas exchanges, but also are vulnerable to infection by water‐borne microorganisms. Omnipresent across fish, gill‐associated lymphoid tissues (GIALT) regulate interactions with local microbiota and halt infection by pathogens. A special GIALT structure has recently been found in Salmonids, the interbranchial lymphoid tissue (ILT). However, the structural variation of GIALT across bony fish remains largely unknown. Here, we show how this critical zone of interaction evolved across fishes. By labeling a conserved T‐cell epitope on tissue sections, we find that several basal groups of teleosts possess typical ILT, while modern teleosts have lymphoepithelium of different shape and size at the base of primary gill filaments. Within Cypriniformes, neither body size variation between two related species, zebrafish and common carp, nor morphotype variation, did have a drastic effect on the structure of ILT. Thereby this study is the first to describe the presence of ILT in zebrafish. The ILT variability across fish orders seems to represent different evolutionary solutions to balancing trade‐offs between multiple adaptations of jaws and pharyngeal region, and immune responses. Our data point to a wide structural variation in gill immunity between basal groups and modern teleosts

    Symmetric expression of ohnologs encoding conserved antiviral responses in tetraploid common carp suggest absence of subgenome dominance after whole genome duplication

    No full text
    International audienceAllopolyploids often experience subgenome dominance, with one subgenome showing higher levels of gene expression and greater gene retention. Here, we address the functionality of both subgenomes of allotetraploid common carp (Cyprinus carpio) by analysing a functional network of interferon-stimulated genes (ISGs) crucial in anti-viral immune defence. As an indicator of subgenome dominance we investigated retainment of a core set of ohnologous ISGs. To facilitate our functional genomic analysis a high quality genome was assembled (WagV4.0). Transcriptome data from an in vitro experiment mimicking a viral infection was used to infer ISG expression. Transcriptome analysis confirmed induction of 88 ISG ohnologs on both subgenomes. In both control and infected states, average expression of ISG ohnologs was comparable between the two subgenomes. Also, the highest expressing and most inducible gene copies of an ohnolog pair could be derived from either subgenome. We found no strong evidence of subgenome dominance for common carp

    High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue

    Get PDF
    International audienceThe zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts (“Percomorphs”), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills

    Identification of a pharyngeal mucosal lymphoid organ in zebrafish and other teleosts: Tonsils in fish?

    Get PDF
    International audienceThe constant exposure of the fish branchial cavity to aquatic pathogens causes local mucosal immune responses to be extremely important for their survival. Here, we used a marker for T lymphocytes/natural killer (NK) cells (ZAP70) and advanced imaging techniques to investigate the lymphoid architecture of the zebrafish branchial cavity. We identified a sub-pharyngeal lymphoid organ, which we tentatively named "Nemausean lymphoid organ" (NELO). NELO is enriched in T/NK cells, plasma/B cells, and antigen-presenting cells embedded in a network of reticulated epithelial cells. The presence of activated T cells and lymphocyte proliferation, but not V(D)J recombination or hematopoiesis, suggests that NELO is a secondary lymphoid organ. In response to infection, NELO displays structural changes including the formation of T/NK cell clusters. NELO and gill lymphoid tissues form a cohesive unit within a large mucosal lymphoid network. Collectively, we reveal an unreported mucosal lymphoid organ reminiscent of mammalian tonsils that evolved in multiple teleost fish famili
    corecore