15 research outputs found

    Electronic prescribing systems in hospitals to improve medication safety: a multimethods research programme.

    Get PDF
    Electronic prescribing (ePrescribing) systems allow health-care professionals to enter prescriptions and manage medicines using a computer. We set out to find out how these ePrescribing systems are chosen, set up and used in English hospitals. Given that these systems are designed to improve medication safety, we looked at whether or not these systems affected the number of prescribing errors made (mistakes such as ordering the wrong dose of medication). We also tried to see whether or not the systems were good value for money (or more cost-effective). Finally, we made recommendations to help hospitals choose, set up and use ePrescribing systems. We found that setting up ePrescribing systems was very difficult because there is a need to take into consideration how different pharmacists, nurses and doctors work, and the different work that needs to be carried out for different diseases and medical conditions. We recorded a link between the implementation of ePrescribing systems and a reduction in some high-risk prescribing errors in two out of three study sites. Given that the error reductions corresponded to the warnings triggered by the system, we concluded that the system is likely to have caused the error reduction. Prescribing errors may lead to adverse events that lead to death, impaired quality of life and longer hospital stays. The cost of an ePrescribing system increased in proportion to reduced errors, reaching ÂŁ4.31 per patient per year for the site that experienced the greatest reduction in prescribing errors (i.e. site S). This estimate is based on assumptions in the model and how much a health service is willing to pay for a unit of health benefit. To help professionals choose, set up and use ePrescribing systems in the future, we produced an online ePrescribing Toolkit (www.eprescribingtoolkit.com/; accessed 21 December 2019) that, with support from NHS England, is becoming widely used internationally

    Navigating tensions in climate change-related planned relocation

    Get PDF
    The planned relocation of communities away from areas of climate-related risk has emerged as a critical strategy to adapt to the impacts of climate change. Empirical examples from around the world show, however, that such relocations often lead to poor outcomes for affected communities. To address this challenge, and contribute to developing guidelines for just and sustainable relocation processes, this paper calls attention to three fundamental tensions in planned relocation processes: (1) conceptualizations of risk and habitability; (2) community consultation and ownership; and (3) siloed policy frameworks and funding mechanisms. Drawing on the collective experience of 29 researchers, policymakers and practitioners from around the world working on planned relocations in the context of a changing climate, we provide strategies for collectively and collaboratively acknowledging and navigating these tensions among actors at all levels, to foster more equitable and sustainable relocation processes and outcomes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Electronic prescribing in hospital:the evaluation of ePrescribing systems in English Hospitals research programme

    Get PDF
    Background: There is a need to identify approaches to reduce medication errors. Interest has converged on ePrescribing systems that incorporate computerised provider order entry and clinical decision support functionality. Objectives: We sought to describe the procurement, implementation and adoption of basic and advanced ePrescribing systems; to estimate their effectiveness and cost-effectiveness; and to develop a toolkit for system integration into hospitals incorporating implications for practice from our research. Design: We undertook a theoretically informed, mixed-methods, context-rich, naturalistic evaluation. Setting: We undertook six longitudinal case studies in four hospitals (sites C, E, J and K) that did not have ePrescribing systems at the start of the programme (three of which went live and one that never went live) and two hospitals (sites A and D) with embedded systems. In the three hospitals that implemented systems, we conducted interviews pre implementation, shortly after roll-out and at 1 year post implementation. In the hospitals that had embedded systems, we conducted two rounds of interviews, 18 months apart. We undertook a three-round eDelphi exercise involving 20 experts to identify 80 clinically important prescribing errors, which were developed into the Investigate Medication Prescribing Accuracy for Critical error Types (IMPACT) tool. We elicited the cost of an ePrescribing system at one (non-study) site and compared this with the calculated ‘headroom’ (the upper limit that the decision-maker should pay) for the systems (sites J, K and S) for which effectiveness estimates were available. We organised four national conferences and five expert round-table discussions to contextualise and disseminate our findings. Intervention: The implementation of ePrescribing systems with either computerised provider order entry or clinical decision support functionality. Main outcome measures: Error rates were calculated using the IMPACT tool, with changes over time represented as ratios of error rates (as a proportion of opportunities for errors) using Poisson regression analyses. Results: We conducted 242 interviews and 32.5 hours of observations and collected 55 documents across six case studies. Implementation was difficult, particularly in relation to integration and interfacing between systems. Much of the clinical decision support functionality in embedded sites remained switched off because of concerns about over alerting. Getting systems operational meant that little attention was devoted to system optimisation or secondary uses of data. The prescriptions of 1244 patients were audited pre computerised provider order entry and 1178 post computerised provider order entry implementation of system A at sites J and K, and system B at site S. A total of 21,138 opportunities for error were identified from 28,526 prescriptions. Across the three sites, for those prescriptions for which opportunities for error were identified, the error rate was found to reduce significantly post computerised provider order entry implementation, from 5.0% to 4.0% (p < 0.001). Post implementation, the overall proportion of errors (per opportunity) decreased significantly in sites J and S, but remained similar in site K, as follows: 4.3% to 2.8%, 7.4% to 4.4% and 4.0% to 4.4%, respectively. Clinical decision support implementation by error type was found to differ significantly between sites, ranging from 0% to 88% across clinical contraindication, dose/frequency, drug interactions and other error types (p < 0.001). Overall, 43 out of 78 (55%) of the errors had some degree of clinical decision support implemented in at least one of the hospitals. For the site in which no improvement was detected in prescribing errors (i.e. site K), the ePrescribing system represented a cost to the service for no countervailing benefit. Cost-effectiveness rose in proportion to reductions in error rates observed in the other sites (i.e. sites J and S). When a threshold value of £20,000 was used to define the opportunity cost, the system would need to cost less than £4.31 per patient per year, even in site S, where effectiveness was greatest. We produced an ePrescribing toolkit (now recommended for use by NHS England) that spans the ePrescribing life cycle from conception to system optimisation. Limitations: Implementation delays meant that we were unable to employ the planned stepped-wedge design and that the assessment of longer-term consequences of ePrescribing systems was impaired. We planned to identify the complexity of ePrescribing implementation in a number of contrasting environments, but the small number of sites means that we have to infer findings from this programme with considerable care. The lack of transparency regarding system costs is a limitation of our method. As with all health economic analyses, our analysis is subject to modelling assumptions. The research was undertaken in a modest number of early adopters, concentrated on high-risk prescribing errors and may not be generalisable to other hospitals. Conclusions: The implementation of ePrescribing systems was challenging. However, when fully implemented the ePrescribing systems were associated with a reduction in clinically important prescribing errors and our model suggests that such an effect is likely to be more cost-effective when clinical decision support is available. Careful system configuration considering clinical processes and workflows is important to achieving these potential benefits and, therefore, our findings may not be generalisable to all system implementations. Future work: Formative and summative evaluations of efforts will be central to promote learning across settings. Other priorities emerging from this work include the possibility of learning from international experiences and the commercial sector

    Value of PET imaging for radiation therapy

    No full text
    This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality
    corecore