19 research outputs found

    Capuchin monkeys do not show human-like pricing effects

    Get PDF
    Recent work in judgment and decision-making has shown that a good’s price can have irrational effects on people’s preferences. People tend to prefer goods that cost more money and assume that such expensive goods will be more effective, even in cases where the price of the good is itself arbitrary. Although much work has documented the existence of these pricing effects, unfortunately little work has addressed where these price effects come from in the first place. Here we use a comparative approach to distinguish between different accounts of this bias and to explore the origins of these effects. Specifically, we test whether brown capuchin monkeys (Cebus apella) are also susceptible to pricing effects within the context of an experimentally trained token economy. Using a capuchin population previously trained in a token market, we explored whether monkeys used price as an indicator of value across four experiments. Although monkeys demonstrated an understanding of which goods had which prices (consistently shifting preferences to cheaper goods when prices were increased), we observed no evidence that such price information affected their valuation of different kinds of goods. These results suggest that human price effects may involve more sophisticated human-unique cognitive capacities, such as an understanding of market forces and signaling

    The evolution of self-control

    Get PDF
    This work was supported by the National Evolutionary Synthesis Center (NESCent) through support of a working group led by C.L.N. and B.H. NESCent is supported by the National Science Foundation (NSF) EF-0905606. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791). Y.S. thanks the National Natural Science Foundation of China (Project 31170995) and National Basic Research Program (973 Program: 2010CB833904). E.E.B. thanks the Duke Vertical Integration Program and the Duke Undergraduate Research Support Office. J.M.P. was supported by a Newton International Fellowship from the Royal Society and the British Academy. L.R.S. thanks the James S. McDonnell Foundation for Award 220020242. L.J.N.B. and M.L.P. acknowledge the National Institutes of Mental Health (R01-MH096875 and R01-MH089484), a Duke Institute for Brain Sciences Incubator Award (to M.L.P.), and a Duke Center for Interdisciplinary Decision Sciences Fellowship (to L.J.N.B.). E.V. and E.A. thank the Programma Nazionale per la Ricerca–Consiglio Nazionale delle Ricerche (CNR) Aging Program 2012–2014 for financial support, Roma Capitale–Museo Civico di Zoologia and Fondazione Bioparco for hosting the Istituto di Scienze e Tecnologie della Cognizione–CNR Unit of Cognitive Primatology and Primate Centre, and Massimiliano Bianchi and Simone Catarinacci for assistance with capuchin monkeys. K.F. thanks the Japan Society for the Promotion of Science (JSPS) for Grant-in-Aid for Scientific Research 20220004. F. Aureli thanks the Stages in the Evolution and Development of Sign Use project (Contract 012-984 NESTPathfinder) and the Integrating Cooperation Research Across Europe project (Contract 043318), both funded by the European Community’s Sixth Framework Programme (FP6/2002–2006). F. Amici was supported by Humboldt Research Fellowship for Postdoctoral Researchers (Humboldt ID 1138999). L.F.J. and M.M.D. acknowledge NSF Electrical, Communications, and Cyber Systems Grant 1028319 (to L.F.J.) and an NSF Graduate Fellowship (to M.M.D.). C.H. thanks Grant-in-Aid for JSPS Fellows (10J04395). A.T. thanks Research Fellowships of the JSPS for Young Scientists (21264). F.R. and Z.V. acknowledge Austrian Science Fund (FWF) Project P21244-B17, the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement 311870 (to F.R.), Vienna Science and Technology Fund Project CS11-026 (to Z.V.), and many private sponsors, including Royal Canin for financial support and the Game Park Ernstbrunn for hosting the Wolf Science Center. S.M.R. thanks the Natural Sciences and Engineering Research Council (Canada). J.K.Y. thanks the US Department of Agriculture–Wildlife Services–National Wildlife Research Center. J.F.C. thanks the James S. McDonnell Foundation and Alfred P. Sloan Foundation. E.L.M. and B.H. thank the Duke Lemur Center and acknowledge National Institutes of Health Grant 5 R03 HD070649-02 and NSF Grants DGE-1106401, NSF-BCS-27552, and NSF-BCS-25172. This is Publication 1265 of the Duke Lemur Center.Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.PostprintPeer reviewe

    Do Capuchin Monkeys (Cebus apella) Diagnose Causal Relations in the Absence of a Direct Reward?

    No full text
    We adapted a method from developmental psychology [1] to explore whether capuchin monkeys (Cebus apella) would place objects on a ‘‘blicket detector’ ’ machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects ’ causal properties based on whether each object ‘‘activated’ ’ the machine. In Experiments 1–3, monkeys received both audiovisual cues and a food reward whenever the machine activated. In these experiments, monkeys spontaneously placed objects on the machine and succeeded at discriminating various patterns of statistical evidence. In Experiments 4 and 5, we modified the procedure so that in the learning trials, monkeys received the audiovisual cues when the machine activated, but did not receive a food reward. In these experiments, monkeys failed to test novel objects in the absence of an immediate food reward, even when doing so could provide critical information about how to obtain a reward in future test trials in which the food reward delivery device was reattached. The present studies suggest that the gap between human and animal causal cognition may be in part a gap of motivation. Specifically, we propose that monkey causal learning is motivated b

    Testing apparatus used for children.

    No full text
    <p>Actors pulled one of the two levers to choose an outcome to distribute to the Receiver situated on the other side of the apparatus.</p

    Testing apparatus used for monkeys.

    No full text
    <p>Monkey Actors pulled one of the two levers to choose an outcome to distribute to the Receiver situated on the other side of the apparatus.</p

    Apparatus used in Experiments 1–5.

    No full text
    <p>A depiction of the experimental setup used in Experiments 1–5, consisting of the blicket detector (left) and testing chamber (right). The blicket detector contained a platform for placing objects (location indicated by the red dumbbell), toy dog that lit up and made a sound when blickets were placed on the machine, and an inclined ramp “grape dispenser” that provided monkeys with a food reward when blickets were placed on the machine.</p
    corecore