323 research outputs found

    Coherent transport of neutral atoms in spin-dependent optical lattice potentials

    Full text link
    We demonstrate the controlled coherent transport and splitting of atomic wave packets in spin-dependent optical lattice potentials. Such experiments open intriguing possibilities for quantum state engineering of many body states. After first preparing localized atomic wave functions in an optical lattice through a Mott insulating phase, we place each atom in a superposition of two internal spin states. Then state selective optical potentials are used to split the wave function of a single atom and transport the corresponding wave packets in two opposite directions. Coherence between the wave packets of an atom delocalized over up to 7 lattice sites is demonstrated.Comment: 4 pages, 6 figure

    Upscaling of bottom-generated turbulence in large-scale 3D models for sediment transport in estuaries and coastal zones

    Get PDF
    Currently used 3D numerical sediment transport models still fail to make good quantitative predictions. To a great extent, this can be attributed to the inadequate description of physical processes which occur at the subgrid scale level. From flume experiments it is known that particle-turbulence interactions near the bed significantly change the effective roughness experienced by the overlying water column. This results in different transport rates if not accounted for.From a theoretical perspective, bed load transport, sheet flow and fluid mud flow are all occurrences of supersaturated suspension flow in the inner near-bed layer comprising the viscous sublayer and the transient layer. Its thickness increases with sediment load, since particle-particle interactions (four-way coupling effects) consume considerable amounts of the available stream power. In order to know how much energy is left over to compute the transport capacity of the outer, fully-developed layer, it is necessary to quantify the energy budget in the inner layer.This is a difficult task. Every modelling approach has its draw-backs and limitations. Lagrangean particle tracking is hopeless, since the required number of particles to approach field conditions is much too high, and the volumes occupied by the particles cannot be neglected. Grain sizes are non-uniform in nature and concentrations near the bed very high, making it very difficult to give an accurate description of the momentum exchange between fluid and solid phase, which accounts for particle collisions. Therefore, in view of large-scale applications, a one-fluid approach is adopted. This implies that the momentum equation is solved for the suspension, together with a turbulence closure model and the sediment mass balance.Since the thickness of the supersaturated inner layer mostly is very small relative to the water depth and the vertical discretization in large scale applications, it is not possible to resolve this layer with a traditional low-Reynolds model approach, which requires a very fine grid. A new approach is proposed, where a modified Prandtl-mixing length (PML) model is used for the bed layer, and a new low-Reynolds model is applied in the outer layers. In this way it is possible to obtain a correct behaviour for tidal oscillating flow in estuaries, where low-Re effects enter high in the water column during slack water.The correction factor for the PML eddy viscosity and the damping functions for the low-Re k-epsilon turbulence model are constructed based on theoretical constraints, DNS and LES generated data, as well as experimental flume data. In parallel, LES and improved two-layer low-Re models are developed to simulate flow over rough bottoms without and with sediment, in order to generate data very close to the bed surface, where no measurements can be made. These additional data are used to help interpret experimental flume data, which always show relatively high experimental errors, and to extend the new damping functions for the cases with bottom roughness and suspended sediment.Preliminary results of the new coarse grid RANS model for open-channel flow with various roughness conditions without and with suspended sediment will be shown, compared to LES results for flow over a wavy bottom, low-Reynolds RANS results over rough bottom and experimental flume data

    Internet public relations at educational institutions

    Get PDF
    This paper is of a theoretical and empirical nature. The theoretical part presents the possibilities of the communication methods in public relations that use the Internet where both non-individualized and individualized communication is applied. The empirical part presents an analysis of the research of the websites of primary, lower-secondary and upper-secondary schools in 19 citie

    Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms

    Full text link
    We report on precision measurements of spin-dependent interaction-strengths in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on the recent observation of coherence in the collisionally driven spin-dynamics of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type oscillations between two spin states of an atom pair allows a direct determination of the coupling parameters in the interaction hamiltonian. We deduce differences in scattering lengths from our data that can directly be compared to theoretical predictions in order to test interatomic potentials. Our measurements agree with the predictions within 20%. The knowledge of these coupling parameters allows one to determine the nature of the magnetic ground state. Our data imply a ferromagnetic ground state for 87Rb in the f=1 manifold, in agreement with earlier experiments performed without the optical lattice. For 87Rb in the f=2 manifold the data points towards an antiferromagnetic ground state, however our error bars do not exclude a possible cyclic phase.Comment: 11 pages, 5 figure

    Three-Dimensional Dirac Electrons at the Fermi Energy in Cubic Inverse Perovskites: Ca_3PbO and its Family

    Full text link
    The band structure of cubic inverse perovskites, Ca_3PbO and its family, are investigated with the first-principles method. A close observation of the band structure reveals that six equivalent Dirac electrons with a very small mass exist on the line connecting the Gamma- and X-points, and at the symmetrically equivalent points in the Brillouin zone. The discovered Dirac electrons are three-dimensional and remarkably located exactly at the Fermi energy. A tight-binding model describing the low-energy band structure is also constructed and used to discuss the origin of the Dirac electrons in this material. Materials related to Ca_3PbO are also studied, and some design principles for the Dirac electrons in this series of materials are proposed.Comment: 4.2 pages, refined versio

    Excitations in two-component Bose-gases

    Full text link
    In this paper, we study a strongly correlated quantum system that has become amenable to experiment by the advent of ultracold bosonic atoms in optical lattices, a chain of two different bosonic constituents. Excitations in this system are first considered within the framework of bosonization and Luttinger liquid theory which are applicable if the Luttinger liquid parameters are determined numerically. The occurrence of a bosonic counterpart of fermionic spin-charge separation is signalled by a characteristic two-peak structure in the spectral functions found by dynamical DMRG in good agreement with analytical predictions. Experimentally, single-particle excitations as probed by spectral functions are currently not accessible in cold atoms. We therefore consider the modifications needed for current experiments, namely the investigation of the real-time evolution of density perturbations instead of single particle excitations, a slight inequivalence between the two intraspecies interactions in actual experiments, and the presence of a confining trap potential. Using time-dependent DMRG we show that only quantitative modifications occur. With an eye to the simulation of strongly correlated quantum systems far from equilibrium we detect a strong dependence of the time-evolution of entanglement entropy on the initial perturbation, signalling limitations to current reasonings on entanglement growth in many-body systems

    Cooling toolbox for atoms in optical lattices

    Full text link
    We propose and analyze several schemes for cooling bosonic and fermionic atoms in an optical lattice potential close to the ground state of the no-tunnelling regime. Some of the protocols rely on the concept of algorithmic cooling, which combines occupation number filtering with ideas from ensemble quantum computation. We also design algorithms that create an ensemble of defect-free quantum registers. We study the efficiency of our protocols for realistic temperatures and in the presence of a harmonic confinement. We also propose an incoherent physical implementation of filtering which can be operated in a continuous way.Comment: 14 pages, 13 figure

    Low-Energy Effective Hamiltonian and the Surface States of Ca_3PbO

    Full text link
    The band structure of Ca_3PbO, which possesses a three-dimensional massive Dirac electron at the Fermi energy, is investigated in detail. Analysis of the orbital weight distributions on the bands obtained in the first-principles calculation reveals that the bands crossing the Fermi energy originate from the three Pb-p orbitals and three Ca-dx2y2 orbitals. Taking these Pb-p and Ca-dx2y2 orbitals as basis wave functions, a tight-binding model is constructed. With the appropriate choice of the hopping integrals and the strength of the spin-orbit coupling, the constructed model sucessfully captures important features of the band structure around the Fermi energy obtained in the first-principles calculation. By applying the suitable basis transformation and expanding the matrix elements in the series of the momentum measured from a Dirac point, the low-energy effective Hamiltonian of this model is explicitely derived and proved to be a Dirac Hamiltonain. The origin of the mass term is also discussed. It is shown that the spin-orbit coupling and the orbitals other than Pb-p and Ca-dx2y2 orbitals play important roles in making the mass term finite. Finally, the surface band structures of Ca_3PbO for several types of surfaces are investigated using the constructed tight-binding model. We find that there appear nontrivial surface states that cannot be explained as the bulk bands projected on the surface Brillouin zone. The relation to the topological insulator is also discussed.Comment: 11 page
    corecore