63 research outputs found

    Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo

    Get PDF
    Background: Pseudomonas species are adapted to evade innate immune responses and can persist at sites of relative tissue hypoxia, including the mucus-plugged airways of patients with cystic fibrosis and bronchiectasis. The ability of these bacteria to directly sense and respond to changes in local oxygen availability is in part consequent upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is homologous with the human hypoxia inducible factor (HIF) prolyl hydroxylases. We report that PPHD expression regulates the neutrophil response to acute pseudomonal infection. Methods: In vitro co-culture experiments were performed with human neutrophils and PPHD-deficient and wild-type bacteria and supernatants, with viable neutrophil counts determined by flow cytometry. In vivo consequences of infection with PPHD deficient P. aeruginosa were determined in an acute pneumonia mouse model following intra-tracheal challenge. Results: Supernatants of PPHD-deficient bacterial cultures contained higher concentrations of the phenazine exotoxin pyocyanin and induced greater acceleration of neutrophil apoptosis than wild-type PAO1 supernatants in vitro. In vivo infection with PPHD mutants compared to wild-type PAO1 controls resulted in increased levels of neutrophil apoptosis and impaired control of infection, with higher numbers of P. aeruginosa recovered from the lungs of mice infected with the PPHD-deficient strain. This resulted in an overall increase in mortality in mice infected with the PPHD-deficient strain. Conclusions: Our data show that Pseudomonas expression of its prolyl hydroxylase influences the outcome of host-pathogen interactions in vitro and in vivo, demonstrating the importance of considering how both host and pathogen adaptations to hypoxia together define outcomes of infection. Given that inhibitors for the HIF prolyl hydroxylases are in late stage trials for the treatment of anaemia and that the active sites of PPHD and human HIF prolyl hydroxylases are closely related, the results are of current clinical interest

    Some Uses and Potentials of Qualitative Methods in Planning

    Get PDF
    Planners use methods borrowed from many disciplines. These are usually modified and adapted to meet planner's needs to acquire and sift through many diverse information sources helpful in dealing with complex problems. The quantitative methods which planners use are well known, well established in practice, and acknowledged by most as tools of the planners' trade. In contrast to this, most planners also use qualitative methods but these are rarely explicitly acknowledged.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68912/2/10.1177_0739456X8600600110.pd

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Direct printing of flexible metallic millimetre-wave frequency selective surfaces

    No full text
    The FSS discussed in this letter are printed using ΠMAK aluminium conductive ribbon of 0.425μm metallization thickness, onto Flexcon TC390 substrate, which consists of a 50μm top layer of polyester, an acrylic adhesive layer of 20μm, and a 56μm glassine release liner, which is removed for testing. The thermal transfer printer used was a Zebra S4M with 300dpi (12 dots per mm) resolution, with maximum label width of 10.16cm and a maximum length of 185.4cm. The conductivity of the metallization was measured using the Van der Pauw method, with a four probe technique, and the metallization printed in a clover leaf configuration. For the 0.425μm thick aluminum ribbon the bulk conductivity was found to be 2.5 x 107 S/m
    corecore