256 research outputs found

    Isolated nano-tendril bundles on tungsten surfaces exposed to radiofrequency helium plasma

    Get PDF
    The DIONISOS experiment is used to study the impact of RF helium (He) plasma on the surface morphology of tungsten (W) at a frequency of 13.56 MHz. Helium ion energy distributions with a span of 70ā€“75 eV, while still below the sputtering threshold result in nano-tendril bundles (NTBs) and free-standing W whiskers on surfaces at 1020 K. The NTBs are distributed intragranularly with coverage of less than 10% while reaching up to 30 Āµm normal to the surface for He ion fluence of 7.6 Ɨ 10Ā²āµmā»Ā² and flux density of 10Ā²Ā²mā»Ā²sā»Ā¹. Analysis of the NTB interior and sub-surface structure is provided through focused ion beam cross section. Keywords: Tungsten fuzz; Helium; Nano-tendril; RF sheathUnited States. Department of Energy (Award DE-SC00-02060)United States. Department of Energy (Grant DE-FC02-99ER54512

    Disruption mitigation using high pressure gas jets

    Get PDF
    The goal of this research is to establish credible disruption mitigation scenarios based on the technique of massive gas injection. Disruption mitigation seeks to minimize or eliminate damage to internal components that can occur due to the rapid dissipation of thermal and magnetic energy during a tokamak disruption. In particular, the focus of present research is extrapolating mitigation techniques to burning plasma experiments such as ITER, where disruption-caused damage poses a serious threat to the lifetime of internal vessel components. A majority of effort has focused on national and international collaborative research with large tokamaks: DIII-D, Alcator C-Mod, JET, and ASDEX Upgrade. The research was oriented towards empirical trials of gas-jet mitigation on several tokamaks, with the goal of developing and applying cohesive models to the data across devices. Disruption mitigation using gas jet injection has proven to be a viable candidate for avoiding or minimizing damage to internal components in burning plasma experiments like ITER. The physics understanding is progress towards a technological design for the required gas injection system in ITER

    Enabling a Multi-Purpose High-Energy Neutron Source Based on High-Current Compact Cyclotrons

    Full text link
    The current and future need for high-energy neutrons has been a subject of increasing discussion and concern. Immediate applications for such an intense neutron source include medical isotope production, high-energy physics (HEP) research, and for materials development and to support qualification for fission reactors. Also, and of the utmost importance, is the need for such a source to inform critical gaps in our understanding of the transmutation materials science issues facing fusion power reactors. A 14 MeV fusion prototypical neutron source (FPNS) has been a critical, yet unresolved need of the fusion program for more than 40 years. Given the narrowing timeline for construction of pilot and fusion power plants the urgency and necessity of such a neutron source has become increasingly time sensitive. One possibility to address this need is a scaled-down version of IFMIF technology ("IFMIF-Lite"), operating at 125 mA with the beam and target technology leveraging technology developed under the IFMIF/EVEDA program. Within this white paper, a blueprint of necessary R&D to enable a transformational change in both the capital and operating cost of this IFMIF-Lite driver concept is presented. Enabling this transformation is the replacement of the historic RFQ/LINAC components with multiple compact 35+ MeV D+ drivers, based on compact cyclotrons

    Demountable Toroidal Field Magnets for Use in a Compact Modular Fusion Reactor

    Get PDF
    A concept of demountable toroidal field magnets for a compact fusion reactor is discussed. The magnets generate a magnetic field of 9.2 T on axis, in a 3.3 m major radius tokamak. Subcooled YBCO conductors have a critical current density adequate to provide this large magnetic field, while operating at 20 K reduces thermodynamic cooling cost of the resistive electrical joints. Demountable magnets allow for vertical replacement and maintenance of internal components, potentially reducing cost and time of maintenance when compared to traditional sector maintenance. Preliminary measurements of contact resistance of a demountable YBCO electrical joint between are presented

    Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path

    Get PDF
    The current fusion energy development path, based on large volume moderate magnetic B field devices is proving to be slow and expensive. A modest development effort in exploiting new superconductor magnet technology development, and accompanying plasma physics research at high-B, could open up a viable and attractive path for fusion energy development. This path would feature smaller volume, fusion capable devices that could be built more quickly than low-to-moderate field designs based on conventional superconductors. Fusionā€™s worldwide development could be accelerated by using several small, flexible devices rather than relying solely on a single, very large device. These would be used to obtain the acknowledged science and technology knowledge necessary for fusion energy beyond achievement of high gain. Such a scenario would also permit the testing of multiple confinement configurations while distributing technical and scientific risk among smaller devices. Higher field and small size also allows operation away from well-known operational limits for plasma pressure, density and current. The advantages of this path have been long recognizedā€”earlier US plans for burning plasma experiments (compact ignition tokamak, burning plasma experiment, fusion ignition research experiment) featured compact high-field designs, but these were necessarily pulsed due to the use of copper coils. Underpinning this new approach is the recent industrial maturity of high-temperature, high-field superconductor tapes that would offer a truly ā€œgame changingā€ opportunity for magnetic fusion when developed into large-scale coils. The superconductor tape form and higher operating temperatures also open up the possibility of demountable superconducting magnets in a fusion system, providing a modularity that vastly improves simplicity in the construction, maintenance, and upgrade of the coils and the internal nuclear engineering components required for fusionā€™s development. Our conclusion is that while tradeoffs exist in design choices, for example coil, cost and stress limits versus size, the potential physics and technology advantages of high-field superconductors are attractive and they should be vigorously pursued for magnetic fusionā€™s development

    Assessment of X-point target divertor configuration for power handling and detachment front control

    Get PDF
    A study of long-legged tokamak divertor configurations is performed with the edge transport code UEDGE (Rognlien et al., J. Nucl. Mater. 196, 347, 1992). The model parameters are based on the ADX tokamak concept design (LaBombard et al., Nucl. Fusion 55, 053020, 2015). Several long-legged divertor configurations are considered, in particular the X-point target configuration proposed for ADX, and compared with a standard divertor. For otherwise identical conditions, a scan of the input power from the core plasma is performed. It is found that as the power is reduced to a threshold value, the plasma in the outer leg transitions to a fully detached state which defines the upper limit on the power for detached divertor operation. Reducing the power further results in the detachment front shifting upstream but remaining stable. At low power the detachment front eventually moves to the primary X-point, which is usually associated with degradation of the core plasma, and this defines the lower limit on the power for the detached divertor operation. For the studied parameters, the operation window for a detached divertor in the standard divertor configuration is very small, or even non-existent; under the same conditions for long-legged divertors the detached operation window is quite large, in particular for the X-point target configuration, allowing a factor of 5ā€“10 variation in the input power. These modeling results point to possibility of stable fully detached divertor operation for a tokamak with extended divertor legs.United States. Department of Energy (Contract DE-AC52-07NA27344

    Heat-flux footprints for I-mode and EDA H-mode plasmas on Alcator C-Mod

    Get PDF
    IR thermography is used to measure the heat flux footprints on C-Modā€™s outer target in I-mode and EDA H-mode plasmas. The footprint profiles are fit to a function with a simple physical interpretation. The fit parameter that is sensitive to the power decay length into the SOL, Ī»[subscript SOL], is ~1ā€“3Ɨ larger in I-modes than in H-modes at similar plasma current, which is the dominant dependence for the H-mode Ī»[subscript SOL]. In contrast, the fit parameter sensitive to transport into the private-flux-zone along the divertor leg is somewhat smaller in I-mode than in H-mode, but otherwise displays no obvious dependence on I[subscript p], B[subscript t], or stored energy. A third measure of the footprint width, the ā€œintegral widthā€, is not significantly different between H- and I-modes. Also discussed are significant differences in the global power flows of the H-modes with ā€œfavorableā€ āˆ‡B drift direction and those of the I-modes with ā€œunfavorableā€ āˆ‡B drift direction.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99-ER54512

    Stationary density profiles in the Alcator C-mod tokamak

    Get PDF
    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations. Ā© 2012 American Institute of Physics.United States. Department of Energy. Office of Fusion Energy Science

    Initial results of tests of depth markers as a surface diagnostic for fusion devices

    Get PDF
    The Accelerator-Based In Situ Materials Surveillance (AIMS) diagnostic was developed to perform in situ ion beam analysis (IBA) on Alcator C-Mod in August 2012 to study divertor surfaces between shots. These results were limited to studying low-Z surface properties, because the Coulomb barrier precludes nuclear reactions between high-Z elements and the āˆ¼1 MeV AIMS deuteron beam. In order to measure the high-Z erosion, a technique using deuteron-induced gamma emission and a low-Z depth marker is being developed. To determine the depth of the marker while eliminating some uncertainty due to beam and detector parameters, the energy dependence of the ratio of two gamma yields produced from the same depth marker will be used to determine the ion beam energy loss in the surface, and thus the thickness of the high-Z surface. This paper presents the results of initial trials of using an implanted depth marker layer with a deuteron beam and the method of ratios. First tests of a lithium depth marker proved unsuccessful due to the production of conflicting gamma peaks, among other issues. However, successful trials with a boron depth marker show that it is possible to measure the depth of the marker layer with the method of gamma yield ratios.United States. Department of Energy. (grant number DE-FG02-94ER54235, cooperative agreement number DEFC02-99ER54512

    Inhibition of Toxic IAPP Amyloid by Extracts of Common Fruits

    Get PDF
    The aggregation of the 37-amino acid polypeptide islet amyloid polypeptide (IAPP, amylin), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of pancreatic Ī²-islet cells in type 2 diabetes. It is believed that inhibiting the aggregation of IAPP may slow down, if not prevent entirely, the progression of this disease. Extracts of thirteen different common fruits were analyzed for their ability to prevent the aggregation of amyloidogenic IAPP. Thioflavin T binding, immuno-detection and circular dichroism assays were performed to test the in vitro inhibitory potential of each extract. Atomic force microscopy was used to visualize the formation of amyloid fibrils with and without each fruit extract. Finally, extracts were tested for their ability to protect living mammalian cells from the toxic effects of amyloid IAPP. Several fruits showed substantial ability to inhibit IAPP aggregation and protect living cells from toxic IAPP amyloid
    • ā€¦
    corecore