22 research outputs found
Interactions between brown-dwarf binaries and Sun-like stars
Several mechanisms have been proposed for the formation of brown dwarfs, but
there is as yet no consensus as to which -- if any -- are operative in nature.
Any theory of brown dwarf formation must explain the observed statistics of
brown dwarfs. These statistics are limited by selection effects, but they are
becoming increasingly discriminating. In particular, it appears (a) that brown
dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga
100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a
significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary
system with another brown dwarf than do brown dwarfs in the field. This then
raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e.
by fragmentation of a circumstellar disc; or have formed elsewhere and
subsequently been captured. We present numerical simulations of the purely
gravitational interaction between a close brown-dwarf binary and a Sun-like
star. These simulations demonstrate that such interactions have a negligible
chance () of leading to the close brown-dwarf binary being captured by
the Sun-like star. Making the interactions dissipative by invoking the
hydrodynamic effects of attendant discs might alter this conclusion. However,
in order to explain the above statistics, this dissipation would have to favour
the capture of brown-dwarf binaries over single brown-dwarfs, and we present
arguments why this is unlikely. The simplest inference is that most brown-dwarf
binaries -- and therefore possibly also most single brown dwarfs -- form by
fragmentation of circumstellar discs around Sun-like protostars, with some of
them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and
Space Scienc
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe