10,950 research outputs found
Symmetry causes a huge conductance peak in double quantum dots
We predict a huge interference effect contributing to the conductance through
large ultra-clean quantum dots of chaotic shape. When a double-dot structure is
made such that the dots are the mirror-image of each other, constructive
interference can make a tunnel barrier located on the symmetry axis effectively
transparent. We show (via theoretical analysis and numerical simulation) that
this effect can be orders of magnitude larger than the well-known universal
conductance fluctuations and weak-localization (both less than a conductance
quantum). A small magnetic field destroys the effect, massively reducing the
double-dot conductance; thus a magnetic field detector is obtained, with a
similar sensitivity to a SQUID, but requiring no superconductors.Comment: 5pages 3 figures and an appendix ONLY in arXiv versio
Recommended from our members
Adequacy of SEIR models when epidemics have spatial structure: Ebola in Sierra Leone.
Dynamic SEIR (Susceptible, Exposed, Infectious, Removed) compartmental models provide a tool for predicting the size and duration of both unfettered and managed outbreaks-the latter in the context of interventions such as case detection, patient isolation, vaccination and treatment. The reliability of this tool depends on the validity of key assumptions that include homogeneity of individuals and spatio-temporal homogeneity. Although the SEIR compartmental framework can easily be extended to include demographic (e.g. age) and additional disease (e.g. healthcare workers) classes, dependence of transmission rates on time, and metapopulation structure, fitting such extended models is hampered by both a proliferation of free parameters and insufficient or inappropriate data. This raises the question of how effective a tool the basic SEIR framework may actually be. We go some way here to answering this question in the context of the 2014-2015 outbreak of Ebola in West Africa by comparing fits of an SEIR time-dependent transmission model to both country- and district-level weekly incidence data. Our novel approach in estimating the effective-size-of-the-populations-at-risk ( Neff) and initial number of exposed individuals ( E0) at both district and country levels, as well as the transmission function parameters, including a time-to-halving-the-force-of-infection ( tf/2) parameter, provides new insights into this Ebola outbreak. It reveals that the estimate R0 ≈ 1.7 from country-level data appears to seriously underestimate R0 ≈ 3.3 - 4.3 obtained from more spatially homogeneous district-level data. Country-level data also overestimate tf/2 ≈ 22 weeks, compared with 8-10 weeks from district-level data. Additionally, estimates for the duration of individual infectiousness is around two weeks from spatially inhomogeneous country-level data compared with 2.4-4.5 weeks from spatially more homogeneous district-level data, which estimates are rather high compared with most values reported in the literature. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'
Environmental effects on polymeric matrix composites
Current epoxy resins utilized in high performance structural composites absorb moisture from high humidity environments. Such moisture absorption causes plasticization of the resin to occur with concurrent swelling and lowering of the glass transition temperature. Similar effects are observed in composites. Data are presented showing the effects of absorbed moisture on Hercules AS/3501-5 graphite/epoxy composites. Prediction of moisture content and distribution in composites, along with reduction in mechanical properties, are discussed
The Unusual Substrate Specificity of a Virulence Associated Serine Hydrolase from the Highly Toxic Bacterium, \u3cem\u3eFrancisella tularensis\u3c/em\u3e
Francisella tularensis is the causative agent of the highly, infectious disease, tularemia. Amongst the genes identified as essential to the virulence of F. tularensis was the proposed serine hydrolase FTT0941c. Herein, we purified FTT0941c to homogeneity and then characterized the folded stability, enzymatic activity, and substrate specificity of FTT0941c. Based on phylogenetic analysis, FTT0941c was classified within a divergent Francisella subbranch of the bacterial hormone sensitive lipase (HSL) superfamily, but with the conserved sequence motifs of a bacterial serine hydrolase. FTT0941c showed broad hydrolase activity against diverse libraries of ester substrates, including significant hydrolytic activity across alkyl ester substrates from 2 to 8 carbons in length. Among a diverse library of fluorogenic substrates, FTT0941c preferred α-cyclohexyl ester substrates, matching with the substrate specificity of structural homologues and the broad open architecture of its modeled binding pocket. By substitutional analysis, FTT0941c was confirmed to have a classic catalytic triad of Ser115, His278, and Asp248 and to remain thermally stable even after substitution. Its overall substrate specificity profile, divergent phylogenetic homology, and preliminary pathway analysis suggested potential biological functions for FTT0941c in diverse metabolic degradation pathways in F. tularensis
- …