20 research outputs found

    A logistics and potential hazard study of propellant systems for a Saturn 5 derived heavy lift (three-stage core) launch vehicle

    Get PDF
    The Bush Administration has directed NASA to prepare for a return to the Moon and on to Mars - the Space Exploration Initiative. To meet this directive, powerful rocket boosters will be required in order to lift payloads that may reach the half-million pound range into low earth orbit. In this report an analysis is presented on logistics and potential hazards of the propellant systems envisioned for future Saturn 5 derived heavy lift launch vehicles. In discussing propellant logistics, particular attention has been given to possible problems associated with procurement, transportation, and storage of RP-1, HL2, and LOX, the heavy lift launch vehicle propellants. Current LOX producing facilities will need to be expanded and propellant storage and some support facilities will require relocation if current Launch Pads 39A and/or 39B are to be used for future heavy noise-abatement measures. Included in the report is a discussion of suggested additional studies, primarily economic and environmental, which should be undertaken in support of the goals of the Space Exploration Initiative

    Longitudinal and Transverse Quasi-Elastic Response Functions of Light Nuclei

    Get PDF
    The 3^3He and 4^4He longitudinal and transverse response functions are determined from an analysis of the world data on quasi-elastic inclusive electron scattering. The corresponding Euclidean response functions are derived and compared to those calculated with Green's function Monte Carlo methods, using realistic interactions and currents. Large contributions associated with two-body currents are found, particularly in the 4^4He transverse response, in agreement with data. The contributions of two-body charge and current operators in the 3^3He, 4^4He, and 6^6Li response functions are also studied via sum-rule techniques. A semi-quantitative explanation for the observed systematics in the excess of transverse quasi-elastic strength, as function of mass number and momentum transfer, is provided. Finally, a number of model studies with simplified interactions, currents, and wave functions is carried out to elucidate the role played, in the full calculation, by tensor interactions and correlations.Comment: 40 pages, 11 figures, submitted to Phys. Rev.

    A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region

    Get PDF
    The coincidence cross-section and the interference structure function, R_LT, were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and central momentum transfer of q=400 MeV/c. The measurement was at an opening angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to 65 MeV. The R_LT structure function is found to be consistent with zero for E_m > 50 MeV, confirming an earlier study which indicated that R_L vanishes in this region. The integrated strengths of the p- and s-shell are compared with a Distorted Wave Impulse Approximation calculation. The s-shell strength and shape are compared with a Hartree Fock-Random Phase Approximation calculation. The DWIA calculation overestimates the cross sections for p- and s-shell proton knockout as expected, but surprisingly agrees with the extracted R_LT value for both shells. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.
    corecore