10 research outputs found

    Organoboron compounds

    No full text

    Planktonic Marine Fungi: A Review

    No full text
    Fungi in marine ecosystems play crucial roles as saprotrophs, parasites, and pathogens. The definition of marine fungi has evolved over the past century. Currently, “marine fungi” are defined as any fungi recovered repeatedly from marine habitats that are able to grow and/or sporulate in marine environments, form symbiotic relationships with other marine organisms, adapt and evolve at the genetic level, or are active metabolically in marine environments. While there are a number of recent reviews synthesizing our knowledge derived from over a century of research on marine fungi, this review article focuses on the state of knowledge on planktonic marine fungi from the coastal and open ocean, defined as fungi that are in suspension or attached to particles, substrates or in association with hosts in the pelagic zone of the ocean, and their roles in remineralization of organic matter and major biogeochemical cycles. This review differs from previous ones by focusing on biogeochemical impacts of planktonic marine fungi and methodological considerations for investigating their diversity and ecological functions. Importantly, we point out gaps in our knowledge and the potential methodological biases that might have contributed to these gaps. Finally, we highlight recommendations that will facilitate future studies of marine fungi. This article first provides a brief overview of the diversity of planktonic marine fungi, followed by a discussion of the biogeochemical impacts of planktonic marine fungi, and a wide range of methods that can be used to study marine fungi

    Leptochelins A–C, Cytotoxic Metallophores Produced by Geographically Dispersed Leptothoe Strains of Marine Cyanobacteria

    No full text
    Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A–C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines

    Leptochelins A-C, Cytotoxic Metallophores Produced by Geographically Dispersed Leptothoe Strains of Marine Cyanobacteria

    No full text
    Metals are important co-factors in the metabolic processes of cyanobacteria including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. The leptochelins are halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Post-column infusion of metals using an LC-MS metabolomics workflow performed with leptochelin A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, but with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play a key ecological role in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines

    Teacher Competence

    No full text
    corecore