35 research outputs found

    Expression of patched, prdm1 and engrailed in the lamprey somite reveals conserved responses to Hedgehog signaling

    Get PDF
    In the zebrafish embryo, expression of the prdm1 and patched1 genes in adaxial cells is indicative of their specification to give rise to slow twitch muscle fibers in response to Hedgehog (Hh) signaling. Subsets of these slow twitch muscle progenitors activate engrailed (eng) strongly in response to high-level Hh signaling, and differentiate into muscle pioneer cells, which are important for subsequent development of the horizontal myoseptum. In addition, eng is expressed more weakly in medial fast fibers in response to lower Hh levels. Somite morphology in the lamprey, an agnathan (jawless) vertebrate, differs significantly from that of teleosts. In particular, the lamprey does not have clear epaxial/hypaxial domains, lacks a horizontal myoseptum, and does not appear to possess distinct populations of fast and slow fibers in the embryonic somite. Nevertheless, Hh is expressed in the midline of the lamprey embryo, and we report here that, as in zebrafish, homologues of patched and prdm1 are expressed in adaxial regions of the lamprey somite, and an eng homologue is also expressed in the somite. However, the lamprey adaxial region does not exhibit the same distinct adaxial cell morphology as in the zebrafish. In addition, the expression of follistatin is not excluded from the adaxial region, and eng is not detected in discrete muscle pioneer-like cells. These data suggest the presence of conserved responses to Hh signaling in lamprey somites, although the full range of effects elicited by Hh in the zebrafish somite is not recapitulated

    Calculation of excited polaron states in the Holstein model

    Full text link
    An exact diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a new and comprehensive picture, involving three excited (coherent) polaron bands below the phonon threshold, is obtained. The coherent contribution of the excited states to both the single-electron spectral density and the optical conductivity is evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain complementary information about the single-electron system at zero temperature. The chosen method reveals the connection between the excited bands and the renormalized local phonon excitations of the adiabatic theory, as well as the regime of parameters for which the electron self-energy has notable non-local contributions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground and first excited state in the crossover regime.Comment: 12 pages, 9 figures, submitted to PR

    Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis

    Get PDF
    Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P<5 × 10(-8)) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding

    Iron and hepcidin as risk factors in atherosclerosis: what do the genes say?

    Get PDF
    Contains fulltext : 153230.pdf (publisher's version ) (Open Access)BACKGROUND: Previous reports suggested a role for iron and hepcidin in atherosclerosis. Here, we evaluated the causality of these associations from a genetic perspective via (i) a Mendelian randomization (MR) approach, (ii) study of association of atherosclerosis-related single nucleotide polymorphisms (SNPs) with iron and hepcidin, and (iii) estimation of genomic correlations between hepcidin, iron and atherosclerosis. RESULTS: Analyses were performed in a general population sample. Iron parameters (serum iron, serum ferritin, total iron-binding capacity and transferrin saturation), serum hepcidin and genome-wide SNP data were available for N = 1,819; non-invasive measurements of atherosclerosis (NIMA), i.e., presence of plaque, intima media thickness and ankle-brachial index (ABI), for N = 549. For the MR, we used 12 iron-related SNPs that were previously identified in a genome-wide association meta-analysis on iron status, and assessed associations of individual SNPs and quartiles of a multi-SNP score with NIMA. Quartile 4 versus quartile 1 of the multi-SNP score showed directionally consistent associations with the hypothesized direction of effect for all NIMA in women, indicating that increased body iron status is a risk factor for atherosclerosis in women. We observed no single SNP associations that fit the hypothesized directions of effect between iron and NIMA, except for rs651007, associated with decreased ferritin concentration and decreased atherosclerosis risk. Two of six NIMA-related SNPs showed association with the ratio hepcidin/ferritin, suggesting that an increased hepcidin/ferritin ratio increases atherosclerosis risk. Genomic correlations were close to zero, except for hepcidin and ferritin with ABI at rest [-0.27 (SE 0.34) and -0.22 (SE 0.35), respectively] and ABI after exercise [-0.29 (SE 0.34) and -0.30 (0.35), respectively]. The negative sign indicates an increased atherosclerosis risk with increased hepcidin and ferritin concentrations. CONCLUSIONS: Our results suggest a potential causal role for hepcidin and ferritin in atherosclerosis, and may indicate that iron status is causally related to atherosclerosis in women
    corecore