85,561 research outputs found
Comment on ``Stripes and the t-J Model''
This is a comment being submitted to Physical Review Letters on a recent
letter by Hellberg and Manousakis on stripes in the t-J model.Comment: One reference correcte
Checkerboard patterns in the t-J model
Using the density matrix renormalization group, we study the possibility of
real space checkerboard patterns arising as the ground states of the t-J model.
We find that checkerboards with a commensurate (pi,pi) background are not low
energy states and can only be stabilized with large external potentials.
However, we find that striped states with charge density waves along the
stripes can form approximate checkerboard patterns. These states can be
stabilized with a very weak external field aligning and pinning the CDWs on
different stripes.Comment: 4 pages, 5 figure
How do galactic winds affect the Lyalpha forest?
We investigate the effect of galactic winds on the Lyalpha forest in
cosmological simulations of structure and galaxy formation. We combine high
resolution N-body simulations of the evolution of the dark matter with a
semi-analytic model for the formation and evolution of galaxies which includes
detailed prescriptions for the long-term evolution of galactic winds. This
model is the first to describe the evolution of outflows as a two-phase process
(an adiabatic bubble followed by a momentum--driven shell) and to include
metal--dependent cooling of the outflowing material. We find that the main
statistical properties of the Lyalpha forest, namely the flux power spectrum
P(k) and the flux probability distribution function (PDF), are not
significantly affected by winds and so do not significantly constrain wind
models. Winds around galaxies do, however, produce detectable signatures in the
forest, in particular, increased flux transmissivity inside hot bubbles, and
narrow, saturated absorption lines caused by dense cooled shells. We find that
the Lyalpha flux transmissivity is highly enhanced near strongly wind-blowing
galaxies, almost half of all high-redshift galaxies in our sample, in agreement
with the results of Adelberger et al. (2005). Finally, we propose a new method
to identify absorption lines potentially due to wind shells in the Lyalpha
forest: we calculate the abundance of saturated regions in spectra as a
function of region width and we find that the number with widths smaller than
about 1 Angstrom at z=3 and 0.6 Angstrom at z=2 may be more than doubled. This
should be detectable in real spectra.Comment: 14 pages, 11 figures. Minor changes in the text. Accepted for
publication in MNRA
Competition Between Stripes and Pairing in a t-t'-J Model
As the number of legs n of an n-leg, t-J ladder increases, density matrix
renormalization group calculations have shown that the doped state tends to be
characterized by a static array of domain walls and that pairing correlations
are suppressed. Here we present results for a t-t'-J model in which a diagonal,
single particle, next-near-neighbor hopping t' is introduced. We find that this
can suppress the formation of stripes and, for t' positive, enhance the
d_{x^2-y^2}-like pairing correlations. The effect of t' > 0 is to cause the
stripes to evaporate into pairs and for t' < 0 to evaporate into
quasi-particles. Results for n=4 and 6-leg ladders are discussed.Comment: Four pages, four encapsulated figure
Effect of the W-term for a t-U-W Hubbard ladder
Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately
balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing
is unclear and models with additional interaction terms have been studied. In
one of these, the square of a local hopping kinetic energy H_W was found to
favor pairing. However, such a term can be separated into a number of simpler
processes and one would like to know which of these terms are responsible for
enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard
ladder
Deconvolution of ASCA X-ray data: II. Radial temperature and metallicity profiles for 106 galaxy clusters
In Paper-I we presented a methodology to recover the spatial variations of
properties of the intracluster gas from ASCA X-ray satellite observations of
galaxy clusters. We verified the correctness of this procedure by applying it
to simulated cluster datasets which we had subjected to the various
contaminants common in ASCA data. In this paper we present the results which we
obtain when we apply this method to real galaxy cluster observations. We
determine broad-band temperature and cooling-flow mass-deposition rates for the
106 clusters in our sample, and obtain temperature, abundance and emissivity
profiles (i.e. at least two annular bins) for 98 of these clusters. We find
that 90 percent of these temperature profiles are consistent with isothermality
at the 3-sigma confidence level. This conflicts with the prevalence of
steeply-declining cluster temperature profiles found by Markevitch et al.
(1998) from a sample of 30 clusters. In Paper-III (in preparation) we utilise
our temperature and emissivity profiles to determine radial hydrostatic-mass
properties for a subsample of the clusters presented in this paper.Comment: MNRAS, accpeted. Postscript copy of paper and individual postscript
files for plots in Appendix B can be obtained from:
http://www-xray.ast.cam.ac.uk/~da
ROSAT PSPC observations of the outer regions of the Perseus cluster of galaxies
We present an analysis of four off-axis ROSAT PSPC observations of the
Perseus cluster of galaxies (Abell~426). We detect the surface brightness
profile to a radius of 80 arcmin ( Mpc) from the X-ray
peak. The profile is measured in various sectors and in three different energy
bands. Firstly, a colour analysis highlights a slight variation of over
the region, and cool components in the core and in the eastern sector. We apply
the -model to the profiles from different sectors and present a solution
to the, so-called, -problem. The residuals from an azimuthally-averaged
profile highlight extended emission both in the East and in the West, with
estimated luminosities of about 8 and 1 , respectively.
We fit several models to the surface brightness profile, including the one
obtained from the Navarro, Frenk and White (1995) potential. We obtain the best
fit with the gas distribution described by a power law in the inner, cooling
region and a -model for the extended emission. Through the best-fit
results and the constraints from the deprojection of the surface brightness
profiles, we define the radius where the overdensity inside the cluster is 200
times the critical value, , at Mpc. Within Mpc (), the total mass in the Perseus cluster is
and its gas fraction is about 30 per cent.Comment: 21 pages, 23 figures; accepted for publication in MNRAS; also
available at http://www-xray.ast.cam.ac.uk/~settori/paper.htm
- …