1,227 research outputs found

    H.C. Whites\u27s, President of UG, Letter to Dabney about Football Game & Dabney\u27s Proof Read Response

    Get PDF

    Silas Puts His Boots in the hall to be Shined but Decides to Take no Chances of Losing Them

    Get PDF
    The stereograph contains a black and white image of a sleeping man and woman. The woman takes up a majority of the bed, while the man\u27s legs hang off the edge and rest on a chair. The man also appears to have his boots on and have them sticking out the door. The image is on a gray-colored card mount.https://scholarsjunction.msstate.edu/fvw-photographs/1070/thumbnail.jp

    That Tack!

    Get PDF
    The stereograph contains a black and white image of three women standing atop chairs. Each woman hold there dresses slightly lifted. One of the women points to something off-camera as the others look in the same direction. The image is on a gray-colored card mount.https://scholarsjunction.msstate.edu/fvw-artifacts/1506/thumbnail.jp

    That Tack!

    Get PDF
    The stereograph contains a black and white image of three women standing atop chairs. Each woman hold there dresses slightly lifted. One of the women points to something off-camera as the others look in the same direction. The image is on a gray-colored card mount.https://scholarsjunction.msstate.edu/fvw-photographs/1192/thumbnail.jp

    Interaction potentials for soft and hard ellipsoids

    Full text link
    Using results from colloid science we derive interaction potentials for computer simulations of mixtures of soft or hard ellipsoids of arbitrary shape and size. Our results are in many respects reminicent of potentials of the Gay-Berne type but have a well-defined microscopic interpretation and no adjustable parameters. Since our potentials require the calculation of similar variables, the modification of existing simulation codes for Gay-Berne potentials is straightforward. The computational performance should remain unaffected.Comment: 8 pages, 4 figure

    EdShare: towards sharing resources for learning and teaching at the University of Southampton

    No full text
    At the University of Southampton, in the UK, we have been developing the Research Repository (e-Prints Soton) since 2005, to showcase the research output and make it more accessible. As a significant next step, the University has taken the strategic decision to develop a repository for educational materials. In developing EdShare at Southampton, we are promoting a cultural shift to a more open and collaborative approach to scholarship as well as research.Successful implementation in such a context requires a lightweight and very simple approach to sharing content facilitated by web 2.0 functionality.<br/

    Coulomb gap in one-dimensional disordered electronic systems

    Full text link
    We study a one-dimensional system of spinless electrons in the presence of a long-range Coulomb interaction (LRCI) and a random chemical potential at each site. We first present a Tomonaga-Luttinger liquid (TLL) description of the system. We use the bosonization technique followed by the replica trick to average over the quenched randomness. An expression for the localization length of the system is then obtained using the renormalization group method and also a physical argument. We then find the density of states for different values of the energy; we get different expressions depending on whether the energy is larger than or smaller than the inverse of the localization length. We work in the limit of weak disorder where the localization length is very large; at that length scale, the LRCI has the effect of reducing the interaction parameter K of the TLL to a value much smaller than the noninteracting value of unity.Comment: Revtex, 6 pages, no figures; discussions have been expanded in several place

    On the multiplicity of the O-star Cyg OB2 #8A and its contribution to the gamma-ray source 3EG J2033+4118

    Full text link
    We present the results of an intensive spectroscopic campaign in the optical waveband revealing that Cyg OB2 #8A is an O6 + O5.5 binary system with a period of about 21.9 d. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal radio emitter. We discuss the binarity of this star in the framework of a campaign devoted to the study of non-thermal emitters, from the radio waveband to gamma-rays. In this context, we attribute the non-thermal radio emission from this star to a population of relativistic electrons, accelerated by the shock of the wind-wind collision. These relativistic electrons could also be responsible for a putative gamma-ray emission through inverse Compton scattering of photospheric UV photons, thus contributing to the yet unidentified EGRET source 3EG J2033+4118.Comment: 8 pages, 4 figures, conference on "The Multiwavelength Approach to Gamma-Ray Sources", to appear in Ap&S

    Tensor network states and geometry

    Full text link
    Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.Comment: 18 pages, 18 figure
    corecore